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Project: 
Produce NLO improved NNLO 
predictions for              with fiducial cuts, 
study impact at high 
Interested Participants: 
Stephen Jones, Xuan Chen, Joey Huston

At large      the                approx fails: 
Rescale NLO by KNNLO = NNLOHTL/NLOHTL

H+Jet known: 
1) NNLO QCD (HTL)  

2) NLO QCD (full      dependence)

H+Jet Improved Fiducial Predictions

H → γγ

mT

p
cut
? LO [fb] NLO[6] [fb] K

400 GeV 11.9+43.7%
�28.9% 25.5+6.4%

�17.0% 2.14

430 GeV 8.2+44%
�29.1% 17.6+6.2%

�17.0% 2.14

450 GeV 6.5+44%
�29% 13.9+6.4%

�17.1% 2.14

500 GeV 3.6+44.2%
�29.4% 7.7+6.2%

�17.2% 2.12

550 GeV 2.1+44.7%
�29.1% 4.4+6.2%

�17.0% 2.12

600 GeV 1.2+44.9%
�29.5% 2.6+6.7%

�17.5% 2.10

650 GeV 0.74+45.1%
�29.9% 1.6+6.5%

�17.5% 2.09

700 GeV 0.45+45.1%
�29.6% 0.93+6.4%

�17.5% 2.07

750 GeV 0.27+45.9%
�29.7% 0.56+5.6%

�17.5% 2.05

800 GeV 0.16+45.0%
�29.9% 0.33+6.1%

�17.5% 2.02

850 GeV 0.09+45.8%
�29.9% 0.19+6.4%

�18.7% 2.00

Table 1: Inclusive cross sections and K-factors for pp ! H+jet in the SM for the relevant p
cut
?

values as computed in ref. [6]. The exact two-loop virtual corrections are included. The results
are obtained with the parton densities set PDF4LHC�30�pdfas (used both for LO and NLO) and
central scales µR = µF = 1/2

⇣p
m

2
H
+ p

2
? +

P
i
|pt,i|

⌘
. Uncertainties are estimated by varying µF

and µR separately by factors of 0.5 and 2 excluding opposite variations.

the results for some relevant p? cuts from refs. [6] are reported in Table 1.102

The exact NLO QCD corrections computed in ref. [6] modify the exact leading order prediction103

significantly but in a uniform way, as it can be appreciated from Fig. 1, from which one can extract104

KQCD ⇠ 2.14 (2.3)

with a very mild p? dependence.105

An analogous behaviour is observed in predictions obtained within the EFT. As a consequence,106

the modifications of the shape of the p? distribution of the Higgs boson due to finite top quark107

mass effects is already accounted for in Eq. (2.1) by the inclusion of exact leading order matrix108

elements. The EFT K-factor is of the size of KEFT ⇠ 1.93.109

Ideally, we want to combine the NNLO predictions computed in the EFT with the exact NLO110

prediction. Under the assumption that the exact NNLO QCD corrections follow the pattern of111

the NNLO EFT corrections, i.e. they would lead to a a uniform K-factor, this can be achieved by112

rescaling EFT NNLO predictions in the following way:113

d�
EFT-improved (1), NNLO

dp?
=

d�
QCD, NLO

dp?
d�EFT, NLO

dp?

d�
EFT, NNLO

dp?
. (2.4)

We combine the above K factors [6] with the NNLO prediction of ref. [4], which uses the setup114

reported at the beginning of Section 2. The prediction of ref. [6] is obtained with a different scale115

choice, namely116

µR = µF =
1

2

 q
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2
? +

X

i
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!

, (2.5)
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Chen, Gehrmann, Glover, Jaquier 14; Boughezal, Caola, 
Melnikov, Petriello, Schulze 15; Boughezal, Focke, Giele, 
Liu, Petriello 15; Campbell, Ellis, Seth 19

Jones, Kerner, Luisoni 18

pT mT → ∞

pT

Chen, Cruz-Martinez, Gehrmann, Glover, Jaquier 16

Figure 8. Jet multiplicity in Higgs-plus-jet production compared to preliminary 13 TeV ATLAS
data [20]. Left panel is the absolute cross section, right panel is normalized to �H .
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Figure 9. Transverse momentum distributions of the leading jet produced in association with a
Higgs boson compared to preliminary 13 TeV ATLAS data [20]. Left panel is the absolute cross
section, right panel is normalized to �H .

uncertainty.

The transverse momentum distribution of the leading jet, Figure 9, and of the Higgs

boson 10 were both measured by ATLAS up to transverse momenta of 200 GeV. The mea-

surements agree well with our NNLO predictions in shape and normalisation already for

the absolute distributions, except for the highest bin in the Higgs transverse momentum

distribution, which is measured to be about two standard deviations above the theory pre-

diction. As already observed for the jet multiplicity at 13 TeV, this quantitative agreement

persists for the normalised distributions.

– 16 –

S.Jones, X.Chen 
and J.Huston
 @ Les Houches
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Higgs Pair Production 

Seraina Glaus 13.05.2019

Uncertainty due to mt: total hadronic cross section 
Take for individual Q values the maximum / minimum differential cross section and 
integrate  

!10

Results

m
HH

[GeV]

gg ! HH at NLO QCD |
p
s = 14 TeV | PDF4LHC15

d�/dm
HH

[fb/GeV]
µ
R
= µ

F
= m

HH
/2

Full NLO results in di↵erent top-mass schemes

MS scheme with m
t
(m

t
)

MS scheme with m
t
(m

HH
/4)

MS scheme with m
t
(m

HH
)

OS scheme

�(gg ! HH) = 32.78(7)+4.0%
�17%

with PDF4LHC15

Now have two independent computations of HH at NLO QCD (both numerical) 
Good agreement between two groups
Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Schubert, Zirke 16; 
Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher 18

Recent calculation allows      to be varied 
Large top-quark mass scheme uncertainty 
  
Questions: 
How exactly should we assess this 
uncertainty? 
How does this impact results at NNLO? 
Can we learn anything more from the 
analytic high-energy limit results? 

Towards resummation? 

mT

Partial EW results now known Borowka, Duhr, Maltoni, Pagani, Shivaji, Zhao 18

Davies, Mishima, Steinhauser, Wellmann 18 
Davies, Herren, Mishima, Steinhauser 19

Liu, Penin 17, 18
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uncertainties due to mt

• transform mt → mt(µ) (MS)

→ modification of mass CT

• use mt, mt(mt) and scan Q/4 < µ < Q → uncertainty = envelope:

dσ(gg → HH)

dQ
|Q=300 GeV = 0.031(1)+10%

−22% fb/GeV,

dσ(gg → HH)

dQ
|Q=400 GeV = 0.1609(4)+7%

−7% fb/GeV,

dσ(gg → HH)

dQ
|Q=600 GeV = 0.03204(9)+0%

−26% fb/GeV,

dσ(gg → HH)

dQ
|Q=1200 GeV = 0.000435(4)+0%

−30% fb/GeV

• preliminary interpolation:

σ(gg → HH) = 32.78+4%
−17% fb (preliminary)
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M.Spira @ Les Houches
uncertainties due to mt

• transform mt → mt(µ) (MS)

→ modification of mass CT

• use mt, mt(mt) and scan Q/4 < µ < Q → uncertainty = envelope:

dσ(gg → HH)

dQ
|Q=300 GeV = 0.031(1)+10%

−22% fb/GeV,

dσ(gg → HH)

dQ
|Q=400 GeV = 0.1609(4)+7%
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Full NLO calculation: top only

Numerical integration, IR subtraction, no tensor reduction, Richardson

extrapolation

∼ −30%

∼ −5%
Baglio, Campanario, Glaus,

Mühlleitner, S., Streicher

• 14 TeV: (mt = 172.5 GeV) σNLO = 32.78(7)+13.5%
−12.5% fb

σHTL
NLO = 38.66+18%

−15% fb (← HPAIR)

⇒ -15% mass effects on top of LO

Top Mass Scheme Uncertainties

“usual” uncertainty extra top mass uncertainty

HH production

need to 
combine them



III CONCLUSIONS

• Higgs pair production at full NLO for variable top/Higgs masses

[top loops]

• top mass effects on top of LO up to 20–30%

• factorization/renormalization scale uncertainties ∼ 15%

• uncertainties due to scale/scheme choice of mt sizeable <∼ 30%

→ reduction unclear

III CONCLUSIONS

• Higgs pair production at full NLO for variable top/Higgs masses

[top loops]

• top mass effects on top of LO up to 20–30%

• factorization/renormalization scale uncertainties ∼ 15%

• uncertainties due to scale/scheme choice of mt sizeable <∼ 30%

→ reduction unclear

‣Resummation of these effects far from trivial 
   different regions need different treatments

M.Spira @ Les Houches

‣Higher order would reduce uncertainty: 
  very complicated…

3 loop amplitude with mT

• triangles for Q2 ≫ 4M2
t :

C →
CA − CF

12

[

log
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− iπ
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S., Djouadi, Graudenz, Zerwas

HTL

threshold

large Q

triangle

Investigate small Q with 1/mT expansion



uncertainties due to mt for single Higgs

• transform mt → mt(µ) (MS)

→ modification of mass CT

• use mt, mt(mt) and scan Q/4 < µ < Q → uncertainty = envelope:

σ(gg → H)|MH=125 GeV = 42.17+0.4%
−0.5% pb

σ(gg → H)|MH=300 GeV = 9.85+7.5%
−0.3% pb

σ(gg → H)|MH=400 GeV = 9.43+0.1%
−0.9% pb

σ(gg → H)|MH=600 GeV = 1.97+0.0%
−15.9% pb

σ(gg → H)|MH=900 GeV = 0.230+0.0%
−22.3% pb

σ(gg → H)|MH=1200 GeV = 0.0402+0.0%
−26.0% pb

very small for on-shell H

Top Mass Scheme Uncertainties : what about single Higgs?

(almost) nobody cared

‣In principle not much a problem since 125 GeV Higgs is light

‣But off-shell production becomes relevant for extraction of Higgs width
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Figure 2: Distribution of the four-lepton invariant mass in the range 100 < m4` < 800 GeV.
Points represent the data, filled histograms the expected contributions from the reducible (Z+X)
and qq backgrounds, and from the sum of the gluon fusion (gg) and vector boson fusion (VV)
processes, including the Higgs boson mediated contributions. The inset shows the distribution
in the low mass region after a selection requirement on the MELA likelihood discriminant
Dkin

bkg > 0.5 [7]. In this region, the contribution of the ttH and VH production processes is
added to the dominant gluon fusion and VBF contributions.

using the observables (mZ1, mZ2, ~W) for a given value of m4`, where ~W denotes the five angles
defined in Ref. [28]. The discriminant is built from the probabilities Pgg

tot and P
qq
bkg for an event to

originate from either the gg ! 4` or the qq ! 4` process. We use the matrix element likelihood
approach (MELA) [2, 29] for the probability computation using the MCFM matrix elements for
both gg ! 4` and qq ! 4` processes. The probability P

gg
tot for the gg ! 4` process includes

the signal (Pgg
sig), the background (Pgg

bkg), and their interference (Pgg
int), as introduced for the

discriminant computation in Ref. [37]. The discriminant is defined as

Dgg =
P

gg
tot

P
gg
tot + P

qq
bkg

=

2

41 +
P

qq
bkg

a ⇥ P
gg
sig +

p
a ⇥ P

gg
int + P

gg
bkg

3

5
�1

, (4)

where the parameter a is the strength of the unknown anomalous gg contribution with respect
to the expected SM contribution (a = 1). We set a = 10 in the definition of Dgg according to the
expected sensitivity. Studies show that the expected sensitivity does not change substantially
when a is varied up or down by a factor of 2. It should be stressed that fixing the parameter a

to a given value only affects the sensitivity of the analysis. To suppress the dominant qq ! 4`
background in the on-shell region, the analysis also employs a MELA likelihood discriminant
Dkin

bkg based on the JHUGEN and MCFM matrix element calculations for the signal and the back-
ground, as illustrated by the inset in Fig. 2 and used in Ref. [7].
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Bounding the Higgs width at the LHC -

How does it work for the Higgs boson?

• Naive expectation: ΓH / mH ~ 10-5 ; resonance peak so narrow that there is no 

off-shell cross section to measure.

• This is spectacularly wrong for the golden channel.

• About 15% of the total cross

section in the region with

m4ℓ > 130 GeV.

3

Kauer, Passarino,1206.4803

ZZ decay 

threshold

tt loop 

threshold2

Bounding the Higgs width at the LHC -

Theoretical ingredients for 4-lepton (ZZ) analysis

• Need precision prediction for the 4-lepton final state.

4

(a)+(b): gluon initiated

(signal and background);

diagrams interfere

(c): dominant background

(d)+(e): “qg interference”, 

same order as (a)*(b);

not numerically important
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dF @ LH
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‣Look at other processes and 
  Characterise the problem

‣How large is the uncertainty 
  induced by mT definition?

‣Call the attention!

‣Many open issues
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Large pt - Boosted Higgs

Expect               approximation to fail, resolve loop 
Known at NLO in 2 approaches: 
1) Expansion valid for 

2) Exact result (numerical)

mT → ∞

m2
H, m2

T ≪ |s | ∼| t | ∼| u |
(Lindert), Kudashkin, Melnikov, Wever 17,18; Neumann 18

SPJ, Kerner, Luisoni 18
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Higgs + Z

LO

S.Jones and R.Röntsch
 @ Les Houches

Full NLO QCD result with variable         available in POWHEG 
Constraints on    also from EW-corrections to H, EW precision
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Expect               approximation to fail, resolve loop 
Known at NLO in 2 approaches: 
1) Expansion valid for 

2) Exact result (numerical)
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T ≪ |s | ∼| t | ∼| u |
(Lindert), Kudashkin, Melnikov, Wever 17,18; Neumann 18
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Large K-factor ~ 2 
For the scale choice                : 
- K-factor very similar to HTL 
- K-factor nearly flat at large  
- ~8% increase from including      in virtuals
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pT
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Several open questions… 
Combination with NNLO HTL 
Top-quark mass scheme uncertainty  
Background processes (V+jets,…) 
Electroweak corrections 
How well do PS really do (esp. for LO accurate 
variables)?
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NLO asymptotic result
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EFT interpretation of Higgs measurements

A. Cueto Gomez
 @ Les Houches

‣Experiments moving from Anomalous Couplings to more general EFT 
approach to constrain new interactions at the LHC

‣Warsaw basis agreed

‣Number of tools to automatise calculations within SMEFT

• none of them is yet “fully complete” 

SMEFTsim LO tool : consistent at LO accuracy (all operators but ~no loops)Which parameters to constrain
ggH cHG

VBF+VH(hadronic) cHbox, cHDD, cHW, cHB, cHWB, cHl3, cHq1, 
cHq3,cHu, cHd, cll1

WH(leptonic) cHbox, cHDD, cHW,cHl3, cHq3, cll1

ZH(leptonic) cHbox, cHDD, cHW, cHB, cHWB, cHl1, cHl3,cHe, 
cHq1, cHq3, cHu, cHd, cll1

ttH(+ tH+ tHW) cG,cHbox,cHDD, cHG, cHW, cuH, cuG, cuW, cuB, 
cHl3, cHq3, cll1, many 4 fermion operators

❖ Interference only. No CP-odd
❖ ~15 operators excluding 4 fermion operators of ttH but with large correlations between them...

Full NLO QCD result with variable         available in POWHEG 
Constraints on    also from EW-corrections to H, EW precision

 18

EFTs - Application to Higgs Pair Production
yT, λ Heinrich, SPJ, Kerner, 

Luisoni, Scyboz 19

g

g h

h

t

g

g h

h

cgg

g

g h

h

h
cg

g

g h

h

t
h
��3

g

g h

h

t

NLO result w/ top mass including EFT couplings 
NNLO result in HTL known including EFT couplings 

All pieces in principle within reach for NLO-improved NNLO result including EFTs 
Would this be useful to have? Linear/non-linear basis? Chromomagnetic operator? 

Combined Meeting with LHCXSWG HH Subgroup Scheduled:  
``SM Uncertainties & EFTs’’  Monday 17 June 14h00-18h00 Auditorium

Buchalla, Capozi, Celis, Heinrich, Scyboz 18

de Florian, Fabre, Mazzitelli 18

ct
ct

ctt

g

g h

h

t

g

g h

h

t
ctg

(not included in NLO analysis)

λ
Bizoń, Gorbahn, Haisch, Zanderighi, Degrassi, Giardino, Maltoni, Pagani, Shivaji, Zhao, Di Vita, Grojean, Panico, 
Riembau, Vantalon, Fedele, Kribs, Maier, Rzehak, Spannowsky, Waite 16,17,18

Full NLO QCD result with variable         available in POWHEG 
Constraints on    also from EW-corrections to H, EW precision

 18

EFTs - Application to Higgs Pair Production
yT, λ Heinrich, SPJ, Kerner, 

Luisoni, Scyboz 19

g

g h

h

t

g

g h

h

cgg

g

g h

h

h
cg

g

g h

h

t
h
��3

g

g h

h

t

NLO result w/ top mass including EFT couplings 
NNLO result in HTL known including EFT couplings 

All pieces in principle within reach for NLO-improved NNLO result including EFTs 
Would this be useful to have? Linear/non-linear basis? Chromomagnetic operator? 

Combined Meeting with LHCXSWG HH Subgroup Scheduled:  
``SM Uncertainties & EFTs’’  Monday 17 June 14h00-18h00 Auditorium

Buchalla, Capozi, Celis, Heinrich, Scyboz 18

de Florian, Fabre, Mazzitelli 18

ct
ct

ctt

g

g h

h

t

g

g h

h

t
ctg

(not included in NLO analysis)

λ
Bizoń, Gorbahn, Haisch, Zanderighi, Degrassi, Giardino, Maltoni, Pagani, Shivaji, Zhao, Di Vita, Grojean, Panico, 
Riembau, Vantalon, Fedele, Kribs, Maier, Rzehak, Spannowsky, Waite 16,17,18

Full NLO QCD result with variable         available in POWHEG 
Constraints on    also from EW-corrections to H, EW precision

 18

EFTs - Application to Higgs Pair Production
yT, λ Heinrich, SPJ, Kerner, 

Luisoni, Scyboz 19

g

g h

h

t

g

g h

h

cgg

g

g h

h

h
cg

g

g h

h

t
h
��3

g

g h

h

t

NLO result w/ top mass including EFT couplings 
NNLO result in HTL known including EFT couplings 

All pieces in principle within reach for NLO-improved NNLO result including EFTs 
Would this be useful to have? Linear/non-linear basis? Chromomagnetic operator? 

Combined Meeting with LHCXSWG HH Subgroup Scheduled:  
``SM Uncertainties & EFTs’’  Monday 17 June 14h00-18h00 Auditorium

Buchalla, Capozi, Celis, Heinrich, Scyboz 18

de Florian, Fabre, Mazzitelli 18

ct
ct

ctt

g

g h

h

t

g

g h

h

t
ctg

(not included in NLO analysis)

λ
Bizoń, Gorbahn, Haisch, Zanderighi, Degrassi, Giardino, Maltoni, Pagani, Shivaji, Zhao, Di Vita, Grojean, Panico, 
Riembau, Vantalon, Fedele, Kribs, Maier, Rzehak, Spannowsky, Waite 16,17,18

Full NLO QCD result with variable         available in POWHEG 
Constraints on    also from EW-corrections to H, EW precision

 18

EFTs - Application to Higgs Pair Production
yT, λ Heinrich, SPJ, Kerner, 

Luisoni, Scyboz 19

g

g h

h

t

g

g h

h

cgg

g

g h

h

h
cg

g

g h

h

t
h
��3

g

g h

h

t

NLO result w/ top mass including EFT couplings 
NNLO result in HTL known including EFT couplings 

All pieces in principle within reach for NLO-improved NNLO result including EFTs 
Would this be useful to have? Linear/non-linear basis? Chromomagnetic operator? 

Combined Meeting with LHCXSWG HH Subgroup Scheduled:  
``SM Uncertainties & EFTs’’  Monday 17 June 14h00-18h00 Auditorium

Buchalla, Capozi, Celis, Heinrich, Scyboz 18

de Florian, Fabre, Mazzitelli 18

ct
ct

ctt

g

g h

h

t

g

g h

h

t
ctg

(not included in NLO analysis)

λ
Bizoń, Gorbahn, Haisch, Zanderighi, Degrassi, Giardino, Maltoni, Pagani, Shivaji, Zhao, Di Vita, Grojean, Panico, 
Riembau, Vantalon, Fedele, Kribs, Maier, Rzehak, Spannowsky, Waite 16,17,18

Full NLO QCD result with variable         available in POWHEG 
Constraints on    also from EW-corrections to H, EW precision

 18

EFTs - Application to Higgs Pair Production
yT, λ Heinrich, SPJ, Kerner, 

Luisoni, Scyboz 19

g

g h

h

t

g

g h

h

cgg

g

g h

h

h
cg

g

g h

h

t
h
��3

g

g h

h

t

NLO result w/ top mass including EFT couplings 
NNLO result in HTL known including EFT couplings 

All pieces in principle within reach for NLO-improved NNLO result including EFTs 
Would this be useful to have? Linear/non-linear basis? Chromomagnetic operator? 

Combined Meeting with LHCXSWG HH Subgroup Scheduled:  
``SM Uncertainties & EFTs’’  Monday 17 June 14h00-18h00 Auditorium

Buchalla, Capozi, Celis, Heinrich, Scyboz 18

de Florian, Fabre, Mazzitelli 18

ct
ct

ctt

g

g h

h

t

g

g h

h

t
ctg

(not included in NLO analysis)

λ
Bizoń, Gorbahn, Haisch, Zanderighi, Degrassi, Giardino, Maltoni, Pagani, Shivaji, Zhao, Di Vita, Grojean, Panico, 
Riembau, Vantalon, Fedele, Kribs, Maier, Rzehak, Spannowsky, Waite 16,17,18

H+J
E.Vryonidou HH Subgroup meeting 2

SMEFT
New Interactions of SM particles 

Buchmuller, Wyler Nucl.Phys. B268 (1986) 621-653   

Grzadkowski et al arxiv:1008.4884 

Important physics can be missed if the LO is used for loop-induced processes 



SMEFT@NLO talk by E. Vryonidou

‣Automated calculation at NLO (madGraph) : including loops
‣Recently released, 4 fermions operators at LO but work in progress

E.Vryonidou HH Subgroup meeting 7

Towards a complete implementation@NLO

Based on:
• Warsaw basis 
• Degrees of freedom for top operators as in dim6top 
Current status:
• 73 degrees of freedom (top, Higgs, gauge):  

• CP-conserving 
• Flavour assumption: U(2)Q x U(2)u x U(3)d x U(3)L x U(3)e 

• Successful validation at LO with dim6top (in turn validated with SMEFTsim) 
• 0/2F@NLO operators validated (with previous partial NLO 

implementations)           http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO
Future plans
• Full NLO model release (4F@NLO) 
• Other flavour assumptions 
• CP-violating effects 

Work in progress with: 
C. Degrande, G. Durieux, F. Maltoni, K. Mimasu, C. Zhang

HH:

‣Check consistency of SMEFTsim 
  and SMEFT@NLO running at LO

‣Study of ggH and ggZH at NLO EFT
In different variables
With all Wilson coefficients 
Provide parametrization of STXS bins

M.Moreno, M.Delmastro, A.Cueto, N.Berger, P.Francavilla, S.Falke, 
D.deF, M.Donega, J.McFayden @ LesHouches



EFT for HH @ NNLO
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Higgs Pair - NNLO HTL Combined with NLO SM

Grazzini, Heinrich, SJ, Kallweit, Kerner, Lindert, 
Mazzitelli 18; (+NNLL) de Florian, Mazzitelli 18;
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Figure 2: Higgs boson pair invariant mass distribution at NNLO for the di↵erent approximations,
together with the NLO prediction, at 14TeV (left) and 100TeV (right). The lower panels show the
ratio with respect to the NLO prediction, and the filled areas indicate the NLO and NNLOFTapprox

scale uncertainties.

harder and the softer Higgs boson (pT,h1 and pT,h2, Figs. 6 and 7), and the azimuthal separation
between the two Higgs bosons (��hh, Fig. 8). For the sake of clarity, we only show the scale
uncertainty bands corresponding to the NLO and NNLOFTapprox predictions.

We start our discussion from the invariant-mass distribution of the Higgs boson pair, re-
ported in Fig. 2. We observe that the NNLOB-proj and NNLONLO-i approximations predict a
similar shape, with very small corrections at threshold, an approximately constant K-factor for
larger invariant masses, and only a small di↵erence in the normalization between them, which
increases in the 100TeV case. The NNLOFTapprox, on the other hand, presents a di↵erent shape,
in particular with larger corrections for lower invariant masses, a minimum in the size of the
corrections close to the region where the maximum of the distribution is located, and a slow
increase towards the tail. The di↵erent behavior of the NNLOFTapprox in the region close to
threshold is more evident at 100TeV, where the increase is about 30% in the first bin. Naively
we could expect that if this region is dominated by soft parton(s) recoiling against the Higgs
bosons, the Born projection and FTapprox should provide similar results. We have investigated
the origin of this di↵erence, and we find that in the region Mhh ⇠ 2Mh the cross section is actu-
ally dominated by events with relatively hard radiation recoiling against the Higgs boson pair
(for example, at

p
s = 100TeV, the average transverse momentum of the Higgs boson pair in

the first Mhh bin is pT,hh ⇠ 100GeV at NLO). In this region the exact loop amplitudes behave
rather di↵erently as compared to the amplitudes evaluated in the HEFT: As the production
threshold is approached, they go to zero faster than in the mass-dependent case, thus explain-
ing the di↵erences we find. Within the NNLOFTapprox, the corrections to the Mhh spectrum
range between 10% and 20% at 14TeV. The scale uncertainty is substantially reduced in the

10

R(ij ! HH +X) =
ABorn

Full
(ij ! HH +X)

A(0)

HEFT
(ij ! HH +X)

<latexit sha1_base64="vPS7ngapfu9yhfctconomQzjMzc="></latexit><latexit sha1_base64="vPS7ngapfu9yhfctconomQzjMzc=">AAACwnicdVFbS8MwFE7rfd6mPvoSHMJEmK0I6oPgnT2qOB2sc6RpukXTpCapOmp/jb/Kf2O21ct0Hgh8Oed8J1++48eMKu0475Y9Nj4xOTU9U5idm19YLC4t3yiRSExqWDAh6z5ShFFOappqRuqxJCjyGbn1H0569dsnIhUV/Fp3Y9KMUJvTkGKkTapVfPMipDsYsfQqK9N7T9J2RyMpxTOsVuFmfQMeQC+UCKdfjUfZXR/LKD0Wkmetz9t5wtjoIdlIdtnZ+CZXz86v/yG3iiWn4vQD/gVuDkogj4vWkjXlBQInEeEaM6RUw3Vi3UyR1BQzkhW8RJEY4QfUJg0DOYqIaqZ9NzO4bjIBDIU0h2vYz/5kpChSqhv5prOnXf2u9ZKjao1Eh3vNlPI40YTjwUNhwqAWsLcaGFBJsGZdAxCW1GiFuIOM99oscGhS8ERjlat+GcgeUqHMpzskyArGOve3UX/BzXbFdSru5U7pcD83cRqsgjVQBi7YBYegCi5ADWBrxtqy9qx9+9S+tx9tNWi1rZyzAobCfv0ATA7ceg==</latexit><latexit sha1_base64="vPS7ngapfu9yhfctconomQzjMzc="></latexit><latexit sha1_base64="vPS7ngapfu9yhfctconomQzjMzc="></latexit>

Differential NNLO HTL + NLO SM 

Top quark mass effects studied using 
3 different approximations

p
s 13 TeV 14 TeV 27 TeV 100 TeV

NLO [fb] 27.78 +13.8%
�12.8% 32.88 +13.5%

�12.5% 127.7 +11.5%
�10.4% 1147 +10.7%

�9.9%

NLOFTapprox [fb] 28.91 +15.0%
�13.4% 34.25 +14.7%

�13.2% 134.1 +12.7%
�11.1% 1220 +11.9%

�10.6%

NNLONLO�i [fb] 32.69 +5.3%
�7.7% 38.66 +5.3%

�7.7% 149.3 +4.8%
�6.7% 1337 +4.1%

�5.4%

NNLOB�proj [fb] 33.42 +1.5%
�4.8% 39.58 +1.4%

�4.7% 154.2 +0.7%
�3.8% 1406 +0.5%

�2.8%

NNLOFTapprox [fb] 31.05 +2.2%
�5.0% 36.69 +2.1%

�4.9% 139.9 +1.3%
�3.9% 1224 +0.9%

�3.2%

Mt unc. NNLOFTapprox ±2.6% ±2.7% ±3.4% ±4.6%

NNLOFTapprox/NLO 1.118 1.116 1.096 1.067

Table 1: Inclusive cross sections for Higgs boson pair production for di↵erent centre-of-mass
energies at NLO and NNLO within the three considered approximations. Scale uncertain-
ties are reported as superscript/subscript. The estimated top quark mass uncertainty of the
NNLOFTapprox predictions is also presented. The uncertainties due to the qT -subtraction and
the numerical evaluation of the virtual NLO contribution are both at the per mille level.

NNLOFTapprox, i.e. by about a factor of three. This reduction of the scale uncertainties is
stronger as we increase the collider energy, being close to a factor of five at 100TeV.

As is well known, scale uncertainties can only provide a lower limit on the true perturbative
uncertainties. In particular, from Table 1 we see that the di↵erence between the NNLO and
NLO central predictions is always larger than the NNLO scale uncertainties (although within
the NLO uncertainty bands). In any case, the strong reduction of scale uncertainties, together
with the moderate impact of NNLO corrections, suggests a significant improvement in the
perturbative convergence as we move from NLO to NNLO.

It is also worth mentioning that the three approximations have a di↵erent behaviour withp
s. For instance at 100TeV, the increase with respect to the NLO prediction for the NNLOB-proj

and NNLONLO-i approaches is 23% and 17%, respectively, values that are close to the ones for
14TeV (20% and 18%, respectively). By contrast, the NNLOFTapprox result increases the NLO
prediction by 7% at 100TeV, i.e. the correction is smaller by almost a factor of two than
at 14TeV (12%), which also means a larger separation with respect to the other two NNLO
approximations. The smaller size of the NNLO corrections in the FTapprox at higher energies
is also consistent with the observed reduction of scale uncertainties.

As was mentioned already in Section 2.2, the NNLOFTapprox result is expected to be the most
accurate one among the approximations studied in this work, and therefore it is considered to
be our best prediction. In order to estimate the remaining uncertainty associated with finite top
quark mass e↵ects at NNLO, we start by considering the accuracy of the FTapprox approximation
at NLO. At 14TeV the NLO FTapprox result (see Table 1) overestimates the full NLO total cross
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scale uncertainties.

harder and the softer Higgs boson (pT,h1 and pT,h2, Figs. 6 and 7), and the azimuthal separation
between the two Higgs bosons (��hh, Fig. 8). For the sake of clarity, we only show the scale
uncertainty bands corresponding to the NLO and NNLOFTapprox predictions.
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(for example, at

p
s = 100TeV, the average transverse momentum of the Higgs boson pair in

the first Mhh bin is pT,hh ⇠ 100GeV at NLO). In this region the exact loop amplitudes behave
rather di↵erently as compared to the amplitudes evaluated in the HEFT: As the production
threshold is approached, they go to zero faster than in the mass-dependent case, thus explain-
ing the di↵erences we find. Within the NNLOFTapprox, the corrections to the Mhh spectrum
range between 10% and 20% at 14TeV. The scale uncertainty is substantially reduced in the
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uncertainties. In particular, from Table 1 we see that the di↵erence between the NNLO and
NLO central predictions is always larger than the NNLO scale uncertainties (although within
the NLO uncertainty bands). In any case, the strong reduction of scale uncertainties, together
with the moderate impact of NNLO corrections, suggests a significant improvement in the
perturbative convergence as we move from NLO to NNLO.

It is also worth mentioning that the three approximations have a di↵erent behaviour withp
s. For instance at 100TeV, the increase with respect to the NLO prediction for the NNLOB-proj

and NNLONLO-i approaches is 23% and 17%, respectively, values that are close to the ones for
14TeV (20% and 18%, respectively). By contrast, the NNLOFTapprox result increases the NLO
prediction by 7% at 100TeV, i.e. the correction is smaller by almost a factor of two than
at 14TeV (12%), which also means a larger separation with respect to the other two NNLO
approximations. The smaller size of the NNLO corrections in the FTapprox at higher energies
is also consistent with the observed reduction of scale uncertainties.

As was mentioned already in Section 2.2, the NNLOFTapprox result is expected to be the most
accurate one among the approximations studied in this work, and therefore it is considered to
be our best prediction. In order to estimate the remaining uncertainty associated with finite top
quark mass e↵ects at NNLO, we start by considering the accuracy of the FTapprox approximation
at NLO. At 14TeV the NLO FTapprox result (see Table 1) overestimates the full NLO total cross
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Benchmark chhh ct ctt cggh cgghh
1 7.5 1.0 �1.0 0.0 0.0
2 1.0 1.0 0.5 �1.6

3 �0.2
3 1.0 1.0 �1.5 0.0 0.8

3

4 �3.5 1.5 �3.0 0.0 0.0
5 1.0 1.0 0.0 1.6

3
1.0
3

6 2.4 1.0 0.0 0.4
3

0.2
3

7 5.0 1.0 0.0 0.4
3

0.2
3

8a 1.0 1.0 0.5 0.8
3 0.0

9 1.0 1.0 1.0 �0.4 �0.2
10 10.0 1.5 �1.0 0.0 0.0
11 2.4 1.0 0.0 2.0

3
1.0
3

12 15.0 1.0 1.0 0.0 0.0
SM 1.0 1.0 0.0 0.0 0.0

Table 1: Benchmark points used for the distributions shown below.
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Figure 2: Higgs-pair invariant mass distribution for the di↵erent shape benchmarks, at NLO
with full top mass dependence (blue-dashed) and NLO HTL (red-solid). The lower panel shows
the di↵erential K-factor.
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Figure 1: Higgs-pair invariant mass distribution for the di↵erent shape benchmarks, at NLO
with full top mass dependence (blue-dashed) and NNLO HTL NLO improved (orange-solid).
The lower panel shows the di↵erentialK-factor, together with the inclusive SMK-factor (black-
dotted) as a reference.
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Figure 3: Higgs-pair invariant mass distribution for di↵erent values of the self-coupling, at
NLO with full top mass dependence (blue-dashed) and NNLO HTL NLO improved (orange-
solid). The lower panel shows the di↵erential K-factor, together with the inclusive SM K-factor
(black-dotted) as a reference.

NNLO approxonly variations on HHH coupling

‣typically 10-15% NNLO
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‣More exclusive distributions
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  match state of the art for SM



ISOLATION PRESCRIPTIONS  
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 Typically used by theoretical tools
 Due to the finite granularity of the detectors, it 
cannot be directly applied at the experimental level 
in its original form
 It formally eliminates the entire fragmentation 
contribution

Smooth cone criterion

2 Photon isolation

2.1 Isolation criteria

Hadron collider experiments at the Tevatron and the LHC do not perform inclusive photon mea-
surements. The background of secondary photons coming from the decays of π0, η, etc. overwhelms
the signal by several orders of magnitude and the experimental selection of prompt diphotons re-
quires isolation cuts (or criteria) to reject this background. The standard cone isolation and the
smooth cone isolation are two of these criteria. Both criteria consider the amount of hadronic
(partonic) transverse energy‡ Ehad

T (r) =
∑

i E
had
T i Θ(r − Riγ) inside a cone of radius r around the

direction of the photon momentum pγ . Then the isolated photons are selected by limiting the
value of Ehad

T (r).

The standard cone isolation criterion fixes the size R of the radius of the isolation cone and it
requires

Ehad
T (R) ≤ ET max , (1)

where the isolation parameter ET max can be either a fixed value of transverse energy or a function
of the photon transverse momentum pTγ (i.e., ET max = ϵ pTγ with a fixed parameter ϵ). A
combination of these two options is also possible: for instance, ET max = 0.05 pTγ + 6 GeV is used
in the study of Refs. [19, 22].

Provided ET max is finite (not vanishing) standard cone isolation leads to infrared-safe cross
sections [57] in QCD perturbation theory. Parton radiation exactly collinear with the direction of
the photon momentum is allowed by the constraint in Eq. (1) and, as a consequence, the treatment
of standard cone isolation within perturbative QCD requires the introduction of parton to photon
fragmentation functions. Decreasing the value of ET max reduces and suppresses the effect of the
fragmentation function (and of the corresponding partonic subprocesses).

The smooth cone isolation criterion [26] (see also Refs. [58, 59]) also fixes the size R of the
isolation cone and it requires

Ehad
T (r) ≤ ET max χ(r;R) , in all cones with r ≤ R , (2)

with a suitable choice of the r dependence of the isolation function χ(r;R). The two key properties
[26] of the isolation function are: χ(r;R) has to smoothly vanish as the cone radius r vanishes
(χ(r) → 0 , if r → 0 ), and it has to fulfil the condition 0 < χ(r;R) ≤ 1 (in particular, χ must
not vanish) for any finite (non-vanishing) value of r. Since Ehad

T (r) does not increase by decreasing
r, in practice the requirement in Eq. (2) is effective only if χ(r;R) monotonically decreases as r
decreases.

The smooth cone isolation criterion implies that, closer to the photon, less hadronic activity
is allowed. The amount of energy deposited by parton radiation at angular distance r = 0 from
the photon is required to be exactly equal to zero, and the fragmentation component (which
has a purely collinear origin in perturbative QCD) of the cross section vanishes completely. The

‡For each four-momentum pµi , the corresponding transverse momentum (pTi), transverse energy (ETi), rapidity
(yi) and azimuthal angle (Φi) are defined in the centre–of–mass frame of the colliding hadrons. Angular distances
Riγ are defined in rapidity–azimuthal angle space (R2

iγ = (yi − yγ)2 + (Φi − Φγ)2).

4

cancellation of perturbative QCD soft divergences still takes place as in ordinary infrared-safe
cross sections, since parton radiation is not forbidden in any finite region of the phase space [26].
It is also preferable to choose isolation functions χ(r;R) with a sufficiently smooth dependence
on r over the entire range 0 < r < R. In particular, large discontinuities of χ(r;R) at finite
values of r are potential sources of instabilities [60] in fixed-order perturbative calculations. Small
discontinuities of the function χ(r;R) (such as those in the discretized version [61] of smooth cone
isolation) are instead acceptable.

A customary choice of the isolation function χ(r;R) is

χ(r;R) =

(

1− cos(r)

1− cos(R)

)n

, (3)

where the value of the power n is typically set to n = 1. We also consider the following isolation
function:

χ(r;R) =
( r

R

)2n
, (4)

whose value depends on the ratio r/R (rather than r and R, independently). The two functions in
Eqs. (3) and (4) are equal at the isolation cone boundary r → R (χ(r;R) → 1) and they behave
similarly as r → 0 (χ(r;R) ∝ r2n).

Comparing the isolation requirements in Eqs. (1) and (2) by using the same values of R and
ET max in both equations, we see that smooth cone isolation is more restrictive than standard cone
isolation. Therefore, the following physical constraint applies:

dσsmooth(R;ET max) < dσstandard(R;ET max) , (5)

where dσ generically denotes total cross sections and differential cross sections with respect to
photon kinematical variables, and the subscripts ‘smooth’ and ‘standard’ refer to smooth and
standard isolation, respectively. Note that the isolation parameters R and ET max are set at the
same values in the two isolated cross sections, dσsmooth and dσstandard, that are compared in the
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Figure 1: The different shapes of the isolation functions χ(r;R) for selected values of the power
n and with R = 0.4. The functions χ(r;R) in Eqs. (3) and (4) are labelled as (r/R)2n (dashed
lines) and Cosn (solid lines), respectively.

similar quantitative results for the two criteria, as a pragmatic approach to mimic the standard
cone isolation that is used in experimental conditions. We think that our comparison with the
same value of ET max (and R) is more informative to investigate and understand differences and
similarities between perturbative QCD results for the two criteria.

The QCD results on standard cone isolation depend on the parton-to-photon fragmentation
function Da/γ(z;µfrag) (a = q, q̄, g), z being the photon momentum fraction with respect to the
momentum of the fragmenting parton a. Owing to the isolation procedure, the value of z is
bounded by a minimum value zmin (1 ≥ z ≥ zmin), and this leads to a quantitative suppres-
sion of the fragmentation component of the diphoton cross section. The typical value of zmin is
zmin ∼ pTγ/(pTγ + ET max), pTγ being the transverse momentum of the photon that is involved in
the fragmentation process. In our quantitative study we use relatively-large values of pTγ (i.e.,
typically, pTγ > 22 GeV) and relatively-small values of ET max. Therefore, zmin is always large
(zmin ∼> 0.9 at ET max = 2 GeV, and still zmin ∼> 0.7 at ET max = 10 GeV), and the suppression fac-
tor ‡ due to αS

α Da/γ is sizeable (roughly one order of magnitude or more, depending on ET max) [92].
We note that at such high values of z the quark (or antiquark) fragmentation function Dq/γ (or
Dq̄/γ) is much larger (roughly by more than a factor of ten) than the gluon fragmentation function
Dg/γ [92]. In our calculation we consistently (according to the formal perturbative expansion)
include all the fragmentation functions. However, due to the dominance of Dq/γ and Dq̄/γ , in all
our qualitative (or semi-quantitative) comments we neglect the effect of Dg/γ (i.e., we can assume
that only Dq/γ and Dq̄/γ contribute). We also note that, because of QCD scaling violation, at high
values of z, Da/γ(z;µfrag) increases (although weakly) by increasing µfrag.

‡At the formal level αS

α Da/γ is the order of magnitude of the ratio between the fragmentation component and
the direct component.
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 Typically used by theoretical tools
 Due to the finite granularity of the detectors, it 
cannot be directly applied at the experimental level 
in its original form
 It formally eliminates the entire fragmentation 
contribution

Smooth cone criterion

2 Photon isolation

2.1 Isolation criteria

Hadron collider experiments at the Tevatron and the LHC do not perform inclusive photon mea-
surements. The background of secondary photons coming from the decays of π0, η, etc. overwhelms
the signal by several orders of magnitude and the experimental selection of prompt diphotons re-
quires isolation cuts (or criteria) to reject this background. The standard cone isolation and the
smooth cone isolation are two of these criteria. Both criteria consider the amount of hadronic
(partonic) transverse energy‡ Ehad

T (r) =
∑

i E
had
T i Θ(r − Riγ) inside a cone of radius r around the

direction of the photon momentum pγ . Then the isolated photons are selected by limiting the
value of Ehad

T (r).

The standard cone isolation criterion fixes the size R of the radius of the isolation cone and it
requires

Ehad
T (R) ≤ ET max , (1)

where the isolation parameter ET max can be either a fixed value of transverse energy or a function
of the photon transverse momentum pTγ (i.e., ET max = ϵ pTγ with a fixed parameter ϵ). A
combination of these two options is also possible: for instance, ET max = 0.05 pTγ + 6 GeV is used
in the study of Refs. [19, 22].

Provided ET max is finite (not vanishing) standard cone isolation leads to infrared-safe cross
sections [57] in QCD perturbation theory. Parton radiation exactly collinear with the direction of
the photon momentum is allowed by the constraint in Eq. (1) and, as a consequence, the treatment
of standard cone isolation within perturbative QCD requires the introduction of parton to photon
fragmentation functions. Decreasing the value of ET max reduces and suppresses the effect of the
fragmentation function (and of the corresponding partonic subprocesses).

The smooth cone isolation criterion [26] (see also Refs. [58, 59]) also fixes the size R of the
isolation cone and it requires

Ehad
T (r) ≤ ET max χ(r;R) , in all cones with r ≤ R , (2)

with a suitable choice of the r dependence of the isolation function χ(r;R). The two key properties
[26] of the isolation function are: χ(r;R) has to smoothly vanish as the cone radius r vanishes
(χ(r) → 0 , if r → 0 ), and it has to fulfil the condition 0 < χ(r;R) ≤ 1 (in particular, χ must
not vanish) for any finite (non-vanishing) value of r. Since Ehad

T (r) does not increase by decreasing
r, in practice the requirement in Eq. (2) is effective only if χ(r;R) monotonically decreases as r
decreases.

The smooth cone isolation criterion implies that, closer to the photon, less hadronic activity
is allowed. The amount of energy deposited by parton radiation at angular distance r = 0 from
the photon is required to be exactly equal to zero, and the fragmentation component (which
has a purely collinear origin in perturbative QCD) of the cross section vanishes completely. The

‡For each four-momentum pµi , the corresponding transverse momentum (pTi), transverse energy (ETi), rapidity
(yi) and azimuthal angle (Φi) are defined in the centre–of–mass frame of the colliding hadrons. Angular distances
Riγ are defined in rapidity–azimuthal angle space (R2

iγ = (yi − yγ)2 + (Φi − Φγ)2).
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cancellation of perturbative QCD soft divergences still takes place as in ordinary infrared-safe
cross sections, since parton radiation is not forbidden in any finite region of the phase space [26].
It is also preferable to choose isolation functions χ(r;R) with a sufficiently smooth dependence
on r over the entire range 0 < r < R. In particular, large discontinuities of χ(r;R) at finite
values of r are potential sources of instabilities [60] in fixed-order perturbative calculations. Small
discontinuities of the function χ(r;R) (such as those in the discretized version [61] of smooth cone
isolation) are instead acceptable.

A customary choice of the isolation function χ(r;R) is

χ(r;R) =

(

1− cos(r)

1− cos(R)

)n

, (3)

where the value of the power n is typically set to n = 1. We also consider the following isolation
function:

χ(r;R) =
( r

R

)2n
, (4)

whose value depends on the ratio r/R (rather than r and R, independently). The two functions in
Eqs. (3) and (4) are equal at the isolation cone boundary r → R (χ(r;R) → 1) and they behave
similarly as r → 0 (χ(r;R) ∝ r2n).

Comparing the isolation requirements in Eqs. (1) and (2) by using the same values of R and
ET max in both equations, we see that smooth cone isolation is more restrictive than standard cone
isolation. Therefore, the following physical constraint applies:

dσsmooth(R;ET max) < dσstandard(R;ET max) , (5)

where dσ generically denotes total cross sections and differential cross sections with respect to
photon kinematical variables, and the subscripts ‘smooth’ and ‘standard’ refer to smooth and
standard isolation, respectively. Note that the isolation parameters R and ET max are set at the
same values in the two isolated cross sections, dσsmooth and dσstandard, that are compared in the
inequality (5) (e.g., the inequality is not necessarily valid if smooth isolation at a given value
of ET max is compared with standard isolation at a different and smaller value of ET max). An
analogous reasoning applies to the cross section dependence on the isolation parameters ET max and
R, since the isolation requirement can become more or less restrictive by varying these parameters.
Therefore, we have the following physical behaviour:

dσis(R;ET max) monotonically decreases as ET max decreases (R fixed) , (6)

dσis(R;ET max) monotonically increases as R decreases (ET max fixed) , (7)

dσsmooth(R;ET max;n) monotonically decreases as n increases (R and ET max fixed) , (8)

and the subscript ‘is’ equally applies to both isolation criteria (e.g., ‘is’=‘smooth’ or ‘is’=‘standard’).
The relation (8) refers to the dependence on the power n in the case of the isolation function in
Eqs. (3) or (4) (a similar relation applies to the cross section dependence by considering two
isolation functions χ1(r) and χ2(r) such that χ1(r) > χ2(r)).

The standard cone isolation criterion is simpler and, as stated in the Introduction, it is the
criterion that is used in experimental analyses at hadron colliders (the actual experimental selec-
tion of isolated photons, including isolation requirements, is definitely much more involved than
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Figure 1: The different shapes of the isolation functions χ(r;R) for selected values of the power
n and with R = 0.4. The functions χ(r;R) in Eqs. (3) and (4) are labelled as (r/R)2n (dashed
lines) and Cosn (solid lines), respectively.

similar quantitative results for the two criteria, as a pragmatic approach to mimic the standard
cone isolation that is used in experimental conditions. We think that our comparison with the
same value of ET max (and R) is more informative to investigate and understand differences and
similarities between perturbative QCD results for the two criteria.

The QCD results on standard cone isolation depend on the parton-to-photon fragmentation
function Da/γ(z;µfrag) (a = q, q̄, g), z being the photon momentum fraction with respect to the
momentum of the fragmenting parton a. Owing to the isolation procedure, the value of z is
bounded by a minimum value zmin (1 ≥ z ≥ zmin), and this leads to a quantitative suppres-
sion of the fragmentation component of the diphoton cross section. The typical value of zmin is
zmin ∼ pTγ/(pTγ + ET max), pTγ being the transverse momentum of the photon that is involved in
the fragmentation process. In our quantitative study we use relatively-large values of pTγ (i.e.,
typically, pTγ > 22 GeV) and relatively-small values of ET max. Therefore, zmin is always large
(zmin ∼> 0.9 at ET max = 2 GeV, and still zmin ∼> 0.7 at ET max = 10 GeV), and the suppression fac-
tor ‡ due to αS

α Da/γ is sizeable (roughly one order of magnitude or more, depending on ET max) [92].
We note that at such high values of z the quark (or antiquark) fragmentation function Dq/γ (or
Dq̄/γ) is much larger (roughly by more than a factor of ten) than the gluon fragmentation function
Dg/γ [92]. In our calculation we consistently (according to the formal perturbative expansion)
include all the fragmentation functions. However, due to the dominance of Dq/γ and Dq̄/γ , in all
our qualitative (or semi-quantitative) comments we neglect the effect of Dg/γ (i.e., we can assume
that only Dq/γ and Dq̄/γ contribute). We also note that, because of QCD scaling violation, at high
values of z, Da/γ(z;µfrag) increases (although weakly) by increasing µfrag.

‡At the formal level αS

α Da/γ is the order of magnitude of the ratio between the fragmentation component and
the direct component.
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 Typically used by experimental analyses
 It can be experimentally implemented in a relatively 
straightforward manner
 Solid and well understood
 It only suppresses part of the fragmentation 
contribution

Standard cone criterion2 Photon isolation

2.1 Isolation criteria

Hadron collider experiments at the Tevatron and the LHC do not perform inclusive photon mea-
surements. The background of secondary photons coming from the decays of π0, η, etc. overwhelms
the signal by several orders of magnitude and the experimental selection of prompt diphotons re-
quires isolation cuts (or criteria) to reject this background. The standard cone isolation and the
smooth cone isolation are two of these criteria. Both criteria consider the amount of hadronic
(partonic) transverse energy‡ Ehad

T (r) =
∑

i E
had
T i Θ(r − Riγ) inside a cone of radius r around the

direction of the photon momentum pγ . Then the isolated photons are selected by limiting the
value of Ehad

T (r).

The standard cone isolation criterion fixes the size R of the radius of the isolation cone and it
requires

Ehad
T (R) ≤ ET max , (1)

where the isolation parameter ET max can be either a fixed value of transverse energy or a function
of the photon transverse momentum pTγ (i.e., ET max = ϵ pTγ with a fixed parameter ϵ). A
combination of these two options is also possible: for instance, ET max = 0.05 pTγ + 6 GeV is used
in the study of Refs. [19, 22].

Provided ET max is finite (not vanishing) standard cone isolation leads to infrared-safe cross
sections [57] in QCD perturbation theory. Parton radiation exactly collinear with the direction of
the photon momentum is allowed by the constraint in Eq. (1) and, as a consequence, the treatment
of standard cone isolation within perturbative QCD requires the introduction of parton to photon
fragmentation functions. Decreasing the value of ET max reduces and suppresses the effect of the
fragmentation function (and of the corresponding partonic subprocesses).

The smooth cone isolation criterion [26] (see also Refs. [58, 59]) also fixes the size R of the
isolation cone and it requires

Ehad
T (r) ≤ ET max χ(r;R) , in all cones with r ≤ R , (2)

with a suitable choice of the r dependence of the isolation function χ(r;R). The two key properties
[26] of the isolation function are: χ(r;R) has to smoothly vanish as the cone radius r vanishes
(χ(r) → 0 , if r → 0 ), and it has to fulfil the condition 0 < χ(r;R) ≤ 1 (in particular, χ must
not vanish) for any finite (non-vanishing) value of r. Since Ehad

T (r) does not increase by decreasing
r, in practice the requirement in Eq. (2) is effective only if χ(r;R) monotonically decreases as r
decreases.

The smooth cone isolation criterion implies that, closer to the photon, less hadronic activity
is allowed. The amount of energy deposited by parton radiation at angular distance r = 0 from
the photon is required to be exactly equal to zero, and the fragmentation component (which
has a purely collinear origin in perturbative QCD) of the cross section vanishes completely. The

‡For each four-momentum pµi , the corresponding transverse momentum (pTi), transverse energy (ETi), rapidity
(yi) and azimuthal angle (Φi) are defined in the centre–of–mass frame of the colliding hadrons. Angular distances
Riγ are defined in rapidity–azimuthal angle space (R2

iγ = (yi − yγ)2 + (Φi − Φγ)2).
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where the isolation parameter ET max can be either a fixed value of transverse energy or a function
of the photon transverse momentum pTγ (i.e., ET max = ϵ pTγ with a fixed parameter ϵ). A
combination of these two options is also possible: for instance, ET max = 0.05 pTγ + 6 GeV is used
in the study of Refs. [19, 22].

Provided ET max is finite (not vanishing) standard cone isolation leads to infrared-safe cross
sections [57] in QCD perturbation theory. Parton radiation exactly collinear with the direction of
the photon momentum is allowed by the constraint in Eq. (1) and, as a consequence, the treatment
of standard cone isolation within perturbative QCD requires the introduction of parton to photon
fragmentation functions. Decreasing the value of ET max reduces and suppresses the effect of the
fragmentation function (and of the corresponding partonic subprocesses).

The smooth cone isolation criterion [26] (see also Refs. [58, 59]) also fixes the size R of the
isolation cone and it requires

Ehad
T (r) ≤ ET max χ(r;R) , in all cones with r ≤ R , (2)

with a suitable choice of the r dependence of the isolation function χ(r;R). The two key properties
[26] of the isolation function are: χ(r;R) has to smoothly vanish as the cone radius r vanishes
(χ(r) → 0 , if r → 0 ), and it has to fulfil the condition 0 < χ(r;R) ≤ 1 (in particular, χ must
not vanish) for any finite (non-vanishing) value of r. Since Ehad

T (r) does not increase by decreasing
r, in practice the requirement in Eq. (2) is effective only if χ(r;R) monotonically decreases as r
decreases.

The smooth cone isolation criterion implies that, closer to the photon, less hadronic activity
is allowed. The amount of energy deposited by parton radiation at angular distance r = 0 from
the photon is required to be exactly equal to zero, and the fragmentation component (which
has a purely collinear origin in perturbative QCD) of the cross section vanishes completely. The

‡For each four-momentum pµi , the corresponding transverse momentum (pTi), transverse energy (ETi), rapidity
(yi) and azimuthal angle (Φi) are defined in the centre–of–mass frame of the colliding hadrons. Angular distances
Riγ are defined in rapidity–azimuthal angle space (R2

iγ = (yi − yγ)2 + (Φi − Φγ)2).
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cancellation of perturbative QCD soft divergences still takes place as in ordinary infrared-safe
cross sections, since parton radiation is not forbidden in any finite region of the phase space [26].
It is also preferable to choose isolation functions χ(r;R) with a sufficiently smooth dependence
on r over the entire range 0 < r < R. In particular, large discontinuities of χ(r;R) at finite
values of r are potential sources of instabilities [60] in fixed-order perturbative calculations. Small
discontinuities of the function χ(r;R) (such as those in the discretized version [61] of smooth cone
isolation) are instead acceptable.

A customary choice of the isolation function χ(r;R) is

χ(r;R) =

(

1− cos(r)

1− cos(R)

)n

, (3)

where the value of the power n is typically set to n = 1. We also consider the following isolation
function:

χ(r;R) =
( r

R

)2n
, (4)

whose value depends on the ratio r/R (rather than r and R, independently). The two functions in
Eqs. (3) and (4) are equal at the isolation cone boundary r → R (χ(r;R) → 1) and they behave
similarly as r → 0 (χ(r;R) ∝ r2n).

Comparing the isolation requirements in Eqs. (1) and (2) by using the same values of R and
ET max in both equations, we see that smooth cone isolation is more restrictive than standard cone
isolation. Therefore, the following physical constraint applies:

dσsmooth(R;ET max) < dσstandard(R;ET max) , (5)

where dσ generically denotes total cross sections and differential cross sections with respect to
photon kinematical variables, and the subscripts ‘smooth’ and ‘standard’ refer to smooth and
standard isolation, respectively. Note that the isolation parameters R and ET max are set at the
same values in the two isolated cross sections, dσsmooth and dσstandard, that are compared in the
inequality (5) (e.g., the inequality is not necessarily valid if smooth isolation at a given value
of ET max is compared with standard isolation at a different and smaller value of ET max). An
analogous reasoning applies to the cross section dependence on the isolation parameters ET max and
R, since the isolation requirement can become more or less restrictive by varying these parameters.
Therefore, we have the following physical behaviour:

dσis(R;ET max) monotonically decreases as ET max decreases (R fixed) , (6)

dσis(R;ET max) monotonically increases as R decreases (ET max fixed) , (7)

dσsmooth(R;ET max;n) monotonically decreases as n increases (R and ET max fixed) , (8)

and the subscript ‘is’ equally applies to both isolation criteria (e.g., ‘is’=‘smooth’ or ‘is’=‘standard’).
The relation (8) refers to the dependence on the power n in the case of the isolation function in
Eqs. (3) or (4) (a similar relation applies to the cross section dependence by considering two
isolation functions χ1(r) and χ2(r) such that χ1(r) > χ2(r)).

The standard cone isolation criterion is simpler and, as stated in the Introduction, it is the
criterion that is used in experimental analyses at hadron colliders (the actual experimental selec-
tion of isolated photons, including isolation requirements, is definitely much more involved than
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Figure 1: The different shapes of the isolation functions χ(r;R) for selected values of the power
n and with R = 0.4. The functions χ(r;R) in Eqs. (3) and (4) are labelled as (r/R)2n (dashed
lines) and Cosn (solid lines), respectively.

similar quantitative results for the two criteria, as a pragmatic approach to mimic the standard
cone isolation that is used in experimental conditions. We think that our comparison with the
same value of ET max (and R) is more informative to investigate and understand differences and
similarities between perturbative QCD results for the two criteria.

The QCD results on standard cone isolation depend on the parton-to-photon fragmentation
function Da/γ(z;µfrag) (a = q, q̄, g), z being the photon momentum fraction with respect to the
momentum of the fragmenting parton a. Owing to the isolation procedure, the value of z is
bounded by a minimum value zmin (1 ≥ z ≥ zmin), and this leads to a quantitative suppres-
sion of the fragmentation component of the diphoton cross section. The typical value of zmin is
zmin ∼ pTγ/(pTγ + ET max), pTγ being the transverse momentum of the photon that is involved in
the fragmentation process. In our quantitative study we use relatively-large values of pTγ (i.e.,
typically, pTγ > 22 GeV) and relatively-small values of ET max. Therefore, zmin is always large
(zmin ∼> 0.9 at ET max = 2 GeV, and still zmin ∼> 0.7 at ET max = 10 GeV), and the suppression fac-
tor ‡ due to αS

α Da/γ is sizeable (roughly one order of magnitude or more, depending on ET max) [92].
We note that at such high values of z the quark (or antiquark) fragmentation function Dq/γ (or
Dq̄/γ) is much larger (roughly by more than a factor of ten) than the gluon fragmentation function
Dg/γ [92]. In our calculation we consistently (according to the formal perturbative expansion)
include all the fragmentation functions. However, due to the dominance of Dq/γ and Dq̄/γ , in all
our qualitative (or semi-quantitative) comments we neglect the effect of Dg/γ (i.e., we can assume
that only Dq/γ and Dq̄/γ contribute). We also note that, because of QCD scaling violation, at high
values of z, Da/γ(z;µfrag) increases (although weakly) by increasing µfrag.

‡At the formal level αS

α Da/γ is the order of magnitude of the ratio between the fragmentation component and
the direct component.
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fixed cone isolation. A detailed study of the e↵ects of this approximation for photon pair

production [41–43] indicates its viability for su�ciently tight [44] isolation criteria.

The discrepancy between the isolation procedure used in experimental measurement

and theory calculation is nevertheless unsatisfactory, and prevents quantitative statements

on the impact of varying isolation parameters or predictions for loose photon isolation.

Fully consistent NNLO predictions with a fixed cone isolation will require the computation

of fragmentation contributions to this order, demanding an extension of NNLO methods

towards identified final state particles. An improvement over the present predictions can

however already be obtained by the following hybrid prescription [45], which was used by

the ATLAS collaboration in Ref. [17] to compare data with NLO predictions from the

multi-purpose SHERPA event generator [46, 47]:

3. Hybrid cone isolation: In the theoretical prediction, a dynamical cone isolation

with a small value of Rd is combined with a fixed cone isolation with a larger value

of R, such that R
2 � R

2

d. The dynamical cone isolation is applied first, such that

events very close to the collinear divergence are vetoed, and the dependence on the

fragmentation process is eliminated. This removes only a small inner cone from the

the fixed isolation cone, which is then applied to the events that passed the dynamical

cone isolation. The experimental analysis uses only the fixed cone isolation. The

hybrid procedure correctly describes the impact of changing the cone size R, which

amounts to changing the catchment area used in the computation of Ehad

T (R). It

discards a small inner fraction of the cone area, potentially introducing an unknown

R-independent shift of the total amount of Ehad

T (R).

In the following, we will perform a detailed comparison and parameter study of the e↵ect

of dynamical and hybrid cone isolation on the prediction of the photon-plus-jet production

cross section.

2.1 Comparison of isolation criteria and parameters

In order to investigate the dependence on the parameter choices for both the dynamical

(dynIso) and the hybrid cone isolation (hybIso) procedures, we use the fiducial cross

section definition of the 13 TeV ATLAS �+jet data [17] (see Section 5.2 below). The photon

has to have a transverse momentum p
�
T > 125 GeV and a rapidity |y� | < 2.37, excluding

the barrel–endcap region [1.37, 1.56]. Each event is required to contain at least one jet,

defined through the anti-kT algorithm [48] with R
j = 0.4, with transverse momentum

p
j
T > 100 GeV and rapidity |yj | < 2.37. A jet must have a separation from the photon axis

of R�j
> 0.8.

We compute the theory predictions at NLO, using the NNPDF3.0 PDF set [49], and

both the renormalization and factorization scale are chosen to be equal to the photon trans-

verse momentum. The theoretical uncertainty arising from the scale choice is estimated by

means of a seven-point scale variation:

µR = a p
�
T , µF = b p

�
T , (2.4)

where a, b 2 (1
2
, 1, 2) and we exclude the pairs (a, b) = (1

2
, 2) and (a, b) = (2, 1

2
).
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