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Theory Uncertainties and Correlations

Reliable theory uncertainties are essential for any precision studies and
interpretation of experimental measurements

@ Especially when theory uncertainties 2 experimental uncertainties

@ Correlations can have significant impact
> In fact, whenever one combines more than a single measurement, one
should ask how the theory uncertainties in the predictions for each
measurement are correlated with each other
» Correlations between different points in a spectrum
» Correlations between processes, observables, ...

@ So far we have (mostly) been skirting the issue
» However, experimentalists have to treat theory uncertainties like any other
systematic uncertainty, and in absence of anything better they have to make
something up based on naive scale variations
> In likelihood fits, some (possibly enveloped) scale variation impact will get
treated as a free nuisance parameter and floated in the fit
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Example: Measurement of the W Mass
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= Strategy: Exploit precisely measured Z pr spectrum to get best possible
description for W

» Regardless how precisely do (W) /dpr can be calculated directly, one
always wants to exploit Z data to maximize precision

Frank Tackmann (DESY) Theory Uncertainties from Nuisance Parameters 2019-06-14 2/17



Example: Extrapolating from Z to W

NS ~ > NS ~~ : NS ~~ : J/
needed measure precisely calculate precisely
theory uncertainties cancel

@ Ratio is just a proxy
» More generally: Combined fit to both processes
» Tuning Pythia on Z and using it to predict W is one example of this
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Example: Extrapolating from Z to W

o) _ [do(2)

} {dU(W)/ dpr
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dO’(Z)/de :| theory
needed measure precisely calculate precisely
theory uncertainties cancel

@ Ratio is just a proxy
» More generally: Combined fit to both processes
» Tuning Pythia on Z and using it to predict W is one example of this

@ Crucial Caveat: Cancellation fundamentally relies on theory correlations
» Take 10% theory uncertainty on do (W) and do(Z)
— 99.5% correlation yields 1% uncertainty on their ratio
— 98.0% correlation yields 2% uncertainty on their ratio — 2 x larger!

@ One of many examples, this happens whenever experiments extrapolate
from some control region or process to the signal region
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What is a Scale Variation
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What is a Scale Variation

It is not automagically a theory uncertainty!

(in case you didn’t pay attention during Stefano’s talk)

Frank Tackmann (DESY) Theory Uncertainties from Nuisance Parameters 2019-06-14 4/17



So What is a Scale Variation

It is a (continuous) change of perturbative scheme, i.e., a different way to
expand the same quantity

€= as(p) — og=cy+ €cy + €2cy + -+

E=as(p) — o=co+ & + &+ -

@ The all-order result is the same and scheme independent

» Truncated expansions are scheme dependent, so their difference might give
us a feeling about the possible size of the missing e%c2 + - - - terms

@ It also might not
» Many examples where this is not quantitatively reliable

» Often, the main reason is that there are new structures in c2 that are not
present in c¢1 (new partonic channels, new kinematic dependences, ...)

» Side note: Using the shift from the previous order has the same caveat
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What About Correlations

Correlations only come from common sources of uncertainties
v~ “Straightforward” for unc. due to input parameters (as(mz), )

Scale variations are inherently ill-suited for correlations
X Scales are not physical parameters with an uncertainty that can be
propagated
X They are not the underlying source of uncertainty

X Scale variation reduces at higher order not because the scales become
better known but because the cross section becomes less dependent on
them

X A priori, scale variations do not imply true correlations between different
kinematic regions or different processes

X Taking an envelope is not a linear operation and so does not propagate

= In my mind, trying to decide how to (un)correlate scale variations in the
end only treats a symptom, but not the actual problem
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A Possible Solution

o=co + as(p)cr + as(un)ecx + ]

Identify the actual source of uncertainty
@ The unknown higher-order corrections: as(p) ca + -+ -

Parametrize and vary the unknown
@ We often know quite a lot about the general structure of ¢,
» 1 dependence, color structure, partonic channels, kinematic structure, ...

@ Suitably parametrize the missing pieces
» Simplest case: ¢ is just a number
» More generally, have to parametrize an unknown function

@ Common/independent pieces between different predictions determine the
correlations between them
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Provides Numerous Advantages

Immediately get all benefits of parametric uncertainties
v Encode correct correlations
v~ Can be propagated straightforwardly
» Including Monte Carlo, BDTs, neural networks, ...
v~ Can be consistently included in fits (and in principle be constrained by data)
> Allows using control measurements to reduce theory uncertainties

v Can correctly correlate theory uncertainties between measurement and
interpretation
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Provides Numerous Advantages

Immediately get all benefits of parametric uncertainties
v Encode correct correlations
v~ Can be propagated straightforwardly
» Including Monte Carlo, BDTs, neural networks, ...
v~ Can be consistently included in fits (and in principle be constrained by data)
» Allows using control measurements to reduce theory uncertainties
v Can correctly correlate theory uncertainties between measurement and
interpretation
Additional theory benefits compared to scale variations
@ Much easier to scrutinize since all assumptions are fully exposed
@ Can fully exploit all partially known higher-order information
@ Can explicitly account for new structures appearing at higher order

@ Typically there will be multiple parameters
» Much safer against accidental underestimates due to multiple parameters
» Due to central-limit theorem, total theory uncertainty becomes Gaussian
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Application to pr Resummation

[arxiv:19xx.soo0n]
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Small-p; Power Expansion

Define scaling variable 7 = p3./m3%, and expand in powers of =
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dr T T
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Factorization and Resummation

Leading-power spectrum factorizes into

hard, collinear, and soft contributions, e.g. for pr
do(©®
dpr

= oo H(Q, 1) /dzﬁa d2ky, A2k,

X Ba(Eav Qeya 122 V) Bb(Eln Qe_Y7 s V)
X S(Kayptyv) 8Py — ka — kp — k)

@ Each function is a renormalized object with an associated RGE
» Structure depends on type of variable but is universal for all hard processes
=- Dependence on pr and Q is fully determined to all orders by a coupled
system of differential equations
» Their solution leads to resummed predictions

» Each resummation order (only) requires as ingredients anomalous
dimensions and boundary conditions entering the RG solution
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Simplest Example: Multiplicative RGE

All-order RGE and its solution

N@ =vu(Q, l‘/) H(Q, pn)
I

’

= H(Quw) = H(Q) x exp| /Q ' d,:f (@)

Necessary ingredients
@ Boundary condition

H(Q) =1+ as(Q)h1 +a*(Q) hy + - -
@ Anomalous dimension

Yu(Q, 1) = as(pu)[To + as(p) T1 4 -+ -] mi2

+ as(p) [0 + s () 1 + -+ ]

= Resummation is determined by coefficients of three fixed-order series
» True regardless of how RGE is solved in more complicated cases
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Theory Nuisance Parameters

Perturbative series at leading power is determined to all orders by a coupled
system of differential equations (RGEs)

boundary conditions| anomalous dimensions

— Each resummation order only order || hn | 8n bn | A" AL Tw Bn
depends on a few L
semi-universal parameters ho | so  bo - = To Bo

, NLL" || by |81 b1 | v T1 B

— Unknown parameters at higher NNLU L R o b h s T, 3
orders are the actual sources of ——— || 2 | °2 2 7}1 e P
perturbative theory uncertainty ~ N LL'|| 7s | s b3 |92 92 Ts fBs
N'LL'|| ha | 84 ba |42 ~5 Ta PBa

@ Basic Idea: Use them as theory nuisance parameters

v Vary them independently to estimate the theory uncertainties

v Impact of each independent nuisance parameter is fully correlated across all
kinematic regions and processes

v Impact of different nuisance parameters is fully uncorrelated

@ Price to Pay: Calculation becomes quite a bit more complex
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How to Vary What

@ Level 1: At given order vary parameters around their known values
co+ as(p)[er + as(p) ez + -] = co+ as(p)(cr + 61)

» Simpler but perhaps less robust

@ Level 2: Implement the full next order in terms of unknown parameters
co + as(p)[er + as(p) ez + -] = co + as(p)[er + as(p) 02]

» More involved, but also more robust, allowing for maximal precision

@ In general, can also have combination of both
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How to Vary What

@ Level 1: At given order vary parameters around their known values
co+ as(p)[er + as(p) ez + -] = co+ as(p)(cr + 61)

» Simpler but perhaps less robust

@ Level 2: Implement the full next order in terms of unknown parameters
co + as(p)[er + as(p) ez + -] = co + as(p)[er + as(p) 02]

» More involved, but also more robust, allowing for maximal precision
@ In general, can also have combination of both

Note: Some parameters are actually functions of additional variables
@ E.g. beam function constants, auxiliary dependences (jet radius, ...)
@ In general, might have to parametrize an unknown function

» Can e.g. expand/parametrize in terms of appropriate functional basis or
known dependence
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Z pr Spectrum ’

For illustration use

o Level1: 6; = (04 0.25) x ¢;

@ Level2: 0, = (0+2) X ¢;
(with the true values for ¢;)

Relative impact of different
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Drell-Yan at High Q vs. Z Pole
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A theory prediction without an uncertainty is about as useful as a
measurement without an uncertainty

@ Uncertainties need to be reliable (small is not good enough ...)

Theory nuisance parameters overcome many problems of scale variations

@ Allow to reliably quantify perturbative theory uncertainties
@ In particular encode correct correlations

» Between different pr values, Q values

» Between different partonic channels, hard processes

» Between different variables (7r, pc*, ¢*, ...),
@ Can be propagated straightforwardly

» Including Monte Carlo, BDTs, neural networks, ...

= A plethora of possibilities to explore ...
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