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Theory Uncertainties and Correlations.

Reliable theory uncertainties are essential for any precision studies and
interpretation of experimental measurements

Especially when theory uncertainties & experimental uncertainties

Correlations can have significant impact
I In fact, whenever one combines more than a single measurement, one

should ask how the theory uncertainties in the predictions for each
measurement are correlated with each other

I Correlations between different points in a spectrum
I Correlations between processes, observables, ...

So far we have (mostly) been skirting the issue
I However, experimentalists have to treat theory uncertainties like any other

systematic uncertainty, and in absence of anything better they have to make
something up based on naive scale variations

I In likelihood fits, some (possibly enveloped) scale variation impact will get
treated as a free nuisance parameter and floated in the fit
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Example: Measurement of the W Mass.

Small pWT < 40 GeV is the
relevant region for mW

Needs very precise
predictions for pWT spectrum

' 2% uncertainties in pWT
translate into ' 10 MeV
uncertainty in mW

Direct theory predictions for
pWT are insufficient
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⇒ Strategy: Exploit precisely measured Z pT spectrum to get best possible
description for W

I Regardless how precisely dσ(W )/dpT can be calculated directly, one
always wants to exploit Z data to maximize precision
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Example: Extrapolating from Z to W.

dσ(W )

dpT
=

[
dσ(Z)

dpT

]
measured

×
[
dσ(W )/dpT

dσ(Z)/dpT

]
theory︸ ︷︷ ︸

needed
︸ ︷︷ ︸

measure precisely
︸ ︷︷ ︸

calculate precisely
theory uncertainties cancel

Ratio is just a proxy
I More generally: Combined fit to both processes
I Tuning Pythia on Z and using it to predict W is one example of this

Crucial Caveat: Cancellation fundamentally relies on theory correlations
I Take 10% theory uncertainty on dσ(W ) and dσ(Z)

→ 99.5% correlation yields 1% uncertainty on their ratio
→ 98.0% correlation yields 2% uncertainty on their ratio – 2× larger!

One of many examples, this happens whenever experiments extrapolate
from some control region or process to the signal region
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What is a Scale Variation?

It is not automagically a theory uncertainty!

(in case you didn’t pay attention during Stefano’s talk)
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So What is a Scale Variation?

It is a (continuous) change of perturbative scheme, i.e., a different way to
expand the same quantity

ε = αs(µ) → σ = c0 + ε c1 + ε2 c2 + · · ·

ε̃ = αs(µ̃) → σ = c0 + ε̃ c̃1 + ε̃2 c̃2 + · · ·

The all-order result is the same and scheme independent
I Truncated expansions are scheme dependent, so their difference might give

us a feeling about the possible size of the missing ε2c2 + · · · terms

It also might not
I Many examples where this is not quantitatively reliable
I Often, the main reason is that there are new structures in c2 that are not

present in c1 (new partonic channels, new kinematic dependences, ...)
I Side note: Using the shift from the previous order has the same caveat
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What About Correlations?

Correlations only come from common sources of uncertainties
X “Straightforward” for unc. due to input parameters (αs(mZ), )

Scale variations are inherently ill-suited for correlations
7 Scales are not physical parameters with an uncertainty that can be

propagated
7 They are not the underlying source of uncertainty
7 Scale variation reduces at higher order not because the scales become

better known but because the cross section becomes less dependent on
them

7 A priori, scale variations do not imply true correlations between different
kinematic regions or different processes

7 Taking an envelope is not a linear operation and so does not propagate

⇒ In my mind, trying to decide how to (un)correlate scale variations in the
end only treats a symptom, but not the actual problem
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A Possible Solution.

σ = c0 + αs(µ)[c1 + αs(µ) c2 + · · ·
]

Identify the actual source of uncertainty
The unknown higher-order corrections: αs(µ) c2 + · · ·

Parametrize and vary the unknown
We often know quite a lot about the general structure of c2

I µ dependence, color structure, partonic channels, kinematic structure, ...

Suitably parametrize the missing pieces
I Simplest case: c2 is just a number
I More generally, have to parametrize an unknown function

Common/independent pieces between different predictions determine the
correlations between them
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Provides Numerous Advantages.

Immediately get all benefits of parametric uncertainties
X Encode correct correlations
X Can be propagated straightforwardly

I Including Monte Carlo, BDTs, neural networks, ...

X Can be consistently included in fits (and in principle be constrained by data)
I Allows using control measurements to reduce theory uncertainties

X Can correctly correlate theory uncertainties between measurement and
interpretation

Additional theory benefits compared to scale variations
Much easier to scrutinize since all assumptions are fully exposed

Can fully exploit all partially known higher-order information

Can explicitly account for new structures appearing at higher order
Typically there will be multiple parameters

I Much safer against accidental underestimates due to multiple parameters
I Due to central-limit theorem, total theory uncertainty becomes Gaussian
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Application to pT Resummation

Application to pT Resummation.

[arxiv:19xx.sooon]
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Application to pT Resummation

Small-pT Power Expansion.
Define scaling variable τ ≡ p2T /m2

V and expand in powers of τ

dσ

dτ
= δ(τ ) + αs

[ ln τ
τ

+
1

τ
+ δ(τ ) + fnons

1 (τ )
]

+ α2
s

[ ln3 τ

τ
+

ln2 τ

τ
+

ln τ

τ
+

1

τ
+ δ(τ ) + fnons

2 (τ )
]

+
...

...
...

...
. . . + . . .

]
= dσ(0)/dτ +O(τ )/τ

For small τ � 1

I Logarithmic terms completely
dominate perturbative series

I Their all-order structure is actually
simpler and more universal, which
allows their resummation

I Also holds the key for a rigorous
treatment of theory correlations 0 20 40 60 80 100
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Application to pT Resummation

Factorization and Resummation.

Leading-power spectrum factorizes into
hard, collinear, and soft contributions, e.g. for pT

dσ(0)

d~pT
= σ0H(Q,µ)

∫
d2~ka d2~kb d2~ks

×Ba(~ka, Qe
Y , µ, ν)Bb(~kb, Qe

−Y , µ, ν)

× S(~ks, µ, ν) δ(~pT − ~ka − ~kb − ~ks)
ℓ

ℓ

p p

Soft

Jet Jet

Each function is a renormalized object with an associated RGE
I Structure depends on type of variable but is universal for all hard processes

⇒ Dependence on pT and Q is fully determined to all orders by a coupled
system of differential equations

I Their solution leads to resummed predictions
I Each resummation order (only) requires as ingredients anomalous

dimensions and boundary conditions entering the RG solution
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Application to pT Resummation

Simplest Example: Multiplicative RGE.

All-order RGE and its solution

µ
dH(Q,µ)

dµ
= γH(Q,µ)H(Q,µ)

⇒ H(Q,µ) = H(Q)× exp

[∫ µ

Q

dµ′

µ′
γH(Q,µ′)

]
Necessary ingredients

Boundary condition

H(Q) = 1 + αs(Q)h1 + α2
s(Q)h2 + · · ·

Anomalous dimension

γH(Q,µ) = αs(µ)
[
Γ0 + αs(µ) Γ1 + · · ·

]
ln
Q

µ

+ αs(µ)
[
γ0 + αs(µ) γ1 + · · ·

]
⇒ Resummation is determined by coefficients of three fixed-order series

I True regardless of how RGE is solved in more complicated cases
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Application to pT Resummation

Theory Nuisance Parameters.

Perturbative series at leading power is determined to all orders by a coupled
system of differential equations (RGEs)

→ Each resummation order only
depends on a few
semi-universal parameters

→ Unknown parameters at higher
orders are the actual sources of
perturbative theory uncertainty

boundary conditions anomalous dimensions

order hn sn bn γh
n γs

n Γn βn

LL h0 s0 b0 − − Γ0 β0

NLL′ h1 s1 b1 γh
0 γs

0 Γ1 β1

NNLL′ h2 s2 b2 γh
1 γs

1 Γ2 β2

N3LL′ h3 s3 b3 γh
2 γs

2 Γ3 β3

N4LL′ h4 s4 b4 γh
3 γs

3 Γ4 β4

Basic Idea: Use them as theory nuisance parameters
X Vary them independently to estimate the theory uncertainties
X Impact of each independent nuisance parameter is fully correlated across all

kinematic regions and processes
X Impact of different nuisance parameters is fully uncorrelated

Price to Pay: Calculation becomes quite a bit more complex
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Application to pT Resummation

How to Vary What.

Level 1: At given order vary parameters around their known values

c0 + αs(µ)
[
c1 + αs(µ) c2 + · · ·

]
→ c0 + αs(µ)(c1 + θ̃1)

I Simpler but perhaps less robust

Level 2: Implement the full next order in terms of unknown parameters

c0 + αs(µ)
[
c1 + αs(µ) c2 + · · ·

]
→ c0 + αs(µ)

[
c1 + αs(µ) θ2

]
I More involved, but also more robust, allowing for maximal precision

In general, can also have combination of both

Note: Some parameters are actually functions of additional variables
E.g. beam function constants, auxiliary dependences (jet radius, ...)
In general, might have to parametrize an unknown function

I Can e.g. expand/parametrize in terms of appropriate functional basis or
known dependence
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Application to pT Resummation

Z pT Spectrum.
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Application to pT Resummation

W vs. Z.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

0 5 10 15 20 25 30 35 40
0.90

0.95

1.00

1.05

1.10

1.15

0 5 10 15 20 25 30 35 40
-10

-5

0

5

10

0 5 10 15 20 25 30 35 40
-2

-1

0

1

2

Frank Tackmann (DESY) Theory Uncertainties from Nuisance Parameters. 2019-06-14 15 / 17



Application to pT Resummation

Drell-Yan at High Q vs. Z Pole.
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Application to pT Resummation

Summary.

A theory prediction without an uncertainty is about as useful as a
measurement without an uncertainty

Uncertainties need to be reliable (small is not good enough ...)

Theory nuisance parameters overcome many problems of scale variations

Allow to reliably quantify perturbative theory uncertainties

In particular encode correct correlations
I Between different pT values, Q values
I Between different partonic channels, hard processes
I Between different variables (~pT , pjet

T , φ∗, ...),

Can be propagated straightforwardly
I Including Monte Carlo, BDTs, neural networks, ...

⇒ A plethora of possibilities to explore ...
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