Subtleties in NLO EW corrections

Marek Schönherr

Universität Zürich

Les Houches 09 Jun 2017

NLO EW calculations

- fixed-order next-to-leading order electroweak corrections
- MUNICH/SHERPA+OPENLOOPS for a range of processes:
- $pp \to V + 0, 1, 2(.3)$ jets Lindert et.al. arXiv:1705.04664 FCC report. arXiv:1607.01831 EW report arXiv:1606.02330 LH'15 arXiv:1605.04692 Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04(2015)012, JHEP04(2016)021 - $pp \rightarrow Zi/pp \rightarrow \gamma j$ ratio LH'15 arXiv 1605 04692 Kallweit.Lindert.Maierhöfer.Pozzorini.MS arXiv:1505.05704 - $pp \rightarrow \gamma/\ell\ell/\ell\nu/\nu\nu + i$ Lindert et.al arXiv:1705.04664 - $pp \rightarrow Vh$ FCC report. arXiv:1607.01831 - $pp \rightarrow 2\ell 2\nu$ Kallweit, Lindert, Pozzorini, MS, arXiv:1705.00598 - $pp \rightarrow t\bar{t}h$ LH'15 arXiv:1605.04692 SHERPA+RECOLA - $pp \rightarrow V+0, 1, 2$ j, $pp \rightarrow 4\ell$, $pp \rightarrow t\bar{t}h$ Biedermann et.al. arXiv:1704.05783 SHERPA+GOSAM - $pp \rightarrow \gamma\gamma + 0, 1, 2$ jets Chiesa et.al. arXiv:1706.xxxxx • dedicated comparisons in LH'15 against RECOLA (Z + 2i) and

MADGRAPH $(t\bar{t}h)$ showed agreement

Diboson production

Kallweit, Lindert, Pozzorini, MS arXiv:1705.00598NLO QCD+EW calculation of DF and SF $pp \rightarrow 2\ell 2\nu$ production1) $pp \rightarrow e^+ \mu^- \nu \bar{\nu}$ Biedermann, et.al. JHEP06(2016)065

DPA: Billoni, Dittmaier, Jäger, Speckner JHEP12(2013)043

 $pp \rightarrow e^+ \mu^- \nu_e \bar{\nu}_\mu$ at LO through WWphoton induced processes contribute twice as much as $c\bar{c}$ -channel at LO to inclusive xs, more in TeV range, incl. at NLO EW 2) $pp \rightarrow e^+ e^- \nu \bar{\nu}$ new

 $pp \rightarrow e^+e^-\nu_e \bar{\nu}_e$ at LO through WW and ZZ $pp \rightarrow e^+e^-\nu_{\mu/\tau}\bar{\nu}_{\mu/\tau}$ at LO through ZZcontribution of ind. procs. depends very much on observable photon induced process included at NLO EW

- all double-, single- and non-resonant diagrams included
- 4F to suppress single-top contribs at NLO QCD, jet veto to control large NLO QCD
- explore how NLO QCD EW can be reproduced with current tools

NLO EW corrections

Combination of QCD and EW correction

• additive - strict fixed order expansion

$$\mathrm{d}\sigma_{\mathsf{QCD}+\mathsf{EW}}^{\mathsf{NLO}} = \mathrm{d}\sigma^{\mathsf{LO}} \left(1 + \delta_{\mathsf{QCD}} + \delta_{\mathsf{EW}}\right)$$

• multiplicative – contains terms of $\mathcal{O}(\alpha_{S}\alpha)$

$$d\sigma_{\mathsf{QCD}\times\mathsf{EW}}^{\mathsf{NLO}} = d\sigma^{\mathsf{LO}} \left(1 + \delta_{\mathsf{QCD}}\right) \left(1 + \delta_{\mathsf{EW}}\right)$$

NLO EW for photon initiated processes

- resolved final state photons should be renormalised on-shell $(\alpha(0))$ \rightarrow absorbs IR divergences from $\gamma \rightarrow f\bar{f}$ splittings not included
- initial state (and unresolved final state) photons should be renormalised at the hard scale (α(m_Z), G_μ, MS, etc.)
 → match IR divergences in PDF evolution and collinear counter term Harland-Lang, Khoze, Ryskin Phys.Lett.B761(2016)20-24 Kallweit, Lindert, Pozzorini, MS arXiv:1705.00598

large pos. NLO QCD, large neg. NLO EW
 → NLO QCD+EW and NLO QCD⊗EW differ significantly

all γPDF agree that γ-ind. > 10% for p_T > 500 GeV very good agreement between CT14qed and LUXqed

• ZZ dominant at very large p_T \rightarrow different EW corrections, take care when extrapolating 2000

• ZZ dominant at very large $p_T \rightarrow$ different EW corrections, take care when extrapolating

• kinematic suppression for $p_T^{\nu\nu}$ at LO, unlocked at NLO QCD not present in γ -induced \Rightarrow large contrib

• kinematic suppression for $p_T^{\nu\nu}$ for WW, but not ZZZZ dominates for MET > 100 GeV with large EW corr.

- incorporate approximate electroweak corrections in SHERPA's NLO QCD multijet merging (MEPS@NLO)
- modify MC@NLO $\overline{\rm B}\text{-}{\rm function}$ to include NLO EW virtual corrections and integrated approx. real corrections

$$\overline{\mathrm{B}}_{n,\mathsf{QCD}+\mathsf{EW}_{\mathsf{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathsf{QCD}}(\Phi_n) + \mathrm{V}_{n,\mathsf{EW}}(\Phi_n) + \mathrm{I}_{n,\mathsf{EW}}(\Phi_n) + \mathrm{B}_{n,\mathsf{mix}}(\Phi_n)$$

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging
 → validated at fixed order, found to be reliable,
 diff. < 5% for observables not driven by real radiation

- incorporate approximate electroweak corrections in SHERPA's NLO QCD multijet merging (MEPS@NLO)
- modify MC@NLO $\overline{\rm B}\text{-}{\rm function}$ to include NLO EW virtual corrections and integrated approx. real corrections

$$\overline{\mathrm{B}}_{n,\mathsf{QCD}+\mathsf{EW}_{\mathsf{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathsf{QCD}}(\Phi_n) + \mathrm{V}_{n,\mathsf{EW}}(\Phi_n) + \mathrm{I}_{n,\mathsf{EW}}(\Phi_n) + \mathrm{B}_{n,\mathsf{mix}}(\Phi_n)$$
exact virtual contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging
 → validated at fixed order, found to be reliable,
 diff. < 5% for observables not driven by real radiation

- incorporate approximate electroweak corrections in SHERPA's NLO QCD multijet merging (MEPS@NLO)
- modify MC@NLO $\overline{\rm B}\text{-}{\rm function}$ to include NLO EW virtual corrections and integrated approx. real corrections

$$\overline{\mathrm{B}}_{n,\mathsf{QCD}+\mathsf{EW}_{\mathsf{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathsf{QCD}}(\Phi_n) + \mathrm{V}_{n,\mathsf{EW}}(\Phi_n) + \mathrm{I}_{n,\mathsf{EW}}(\Phi_n) + \mathrm{B}_{n,\mathsf{mix}}(\Phi_n)$$
exact virtual contribution
approximate integrated real contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging
 → validated at fixed order, found to be reliable,
 diff. < 5% for observables not driven by real radiation

- incorporate approximate electroweak corrections in SHERPA's NLO QCD multijet merging (MEPS@NLO)
- modify MC@NLO $\overline{\rm B}\text{-function}$ to include NLO EW virtual corrections and integrated approx. real corrections

optionally include subleading Born

$$\overline{\mathrm{B}}_{n,\mathrm{QCD}+\mathrm{EW}_{\mathrm{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathrm{QCD}}(\Phi_n) + \mathrm{V}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{I}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{B}_{n,\mathrm{mix}}^{\dagger}(\Phi_n)$$

exact virtual contribution

approximate integrated real contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging
 → validated at fixed order, found to be reliable,
 diff. < 5% for observables not driven by real radiation

- incorporate approximate electroweak corrections in SHERPA's NLO QCD multijet merging (MEPS@NLO)
- modify MC@NLO $\overline{\rm B}\text{-function}$ to include NLO EW virtual corrections and integrated approx. real corrections

optionally include subleading Born

$$\overline{\mathrm{B}}_{n,\mathrm{QCD}+\mathrm{EW}_{\mathrm{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathrm{QCD}}(\Phi_n) + \mathrm{V}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{I}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{B}_{n,\mathrm{mix}}^{\dagger}(\Phi_n)$$

exact virtual contribution

approximate integrated real contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging
 → validated at fixed order, found to be reliable,
 - diff. $\lesssim 5\%$ for observables not driven by real radiation

External photons - initial state

Harland-Lang et.al. arXiv:1605.04935, Kallweit et.al. arxiv:1705.00598

- initial state photons are not resolved, treat them identically to any other parton
- both elastic and inelastic photons evolve according to DGLAP
 → splittings γ → γ, γ → qq̄, q → qγ
- the photon PDF (at NLO QED) contains renormalisation factors that must be cancelled by the partonic cross section
- \Rightarrow renormalisation in short-distance scheme (G_{μ} , $\alpha(m_Z)$, $\overline{\text{MS}}$, ...)

External photons – final state

- **final state photons** may be resolved or not strictly speaking: differentiate between short-distance photon and indentified, measurable photon
- ⇒ if treated as identified particle, renormalise on-shell ($\alpha(0)$), no $\gamma \rightarrow ff$ splittings
 - \rightarrow renormalisation contains IR poles
- ⇒ if treated democratically (just another parton), renormalise in short distance scheme (G_{μ} , $\alpha(m_Z)$, $\overline{\text{MS}}$, ...), include $\gamma \rightarrow ff$ splittings
 - \rightarrow pure UV renormalisation
 - ightarrow identify photon through fragmentation function $D^p_\gamma(z,\mu)$

i.e.
$$D_{\gamma}^{\gamma}(z,\mu) = rac{lpha(\mathbf{0})}{lpha_{\mathsf{sd}}}\,\delta(1-z) + \mathcal{O}(lpha)$$

all others $D^{q}_{\gamma}(z,\mu) = \mathcal{O}(lpha), \ D^{g}_{\gamma}(z,\mu) = \mathcal{O}(lpha^{2})$

- identical at NLO EW, if fragmentation D^q_γ on Born is negligible

External photons – final state

- jet definition: completely democratic vs. anti-tagging jets with too large photon content
- democratic:
 - + straight forward, close to experiment for many procs
 - more subtractions (Born configs with FS photons)
- anti-tagging jets with too large photon content: dress quarks for collinear safety, discard jets if $E_{\gamma} > z_{\text{thr}} E_{\text{jet}}$ (e.g. $z_{\text{thr}} = 0.5$)
 - + fewer contributions
 - difference to experimental jet definition (usually subpercent)

n_f schemes and limited PDF availability

- all available QED PDFs are either 5F (CT14, LUX, NNPDF3.0) or 6F (NNPDF2.3)
- will need to scheme conversion terms Cacciari, Greco, Nason hep-ph/9803400

$$\begin{split} &\sigma_{\mathsf{NLO}}^{(n_{r})}(\mu_{R}^{2},\mu_{R}^{2}) \\ &= \sigma_{\mathsf{NLO}}^{(n_{r})}(\mu_{R}^{2},\mu_{R}^{2}) \\ &+ \frac{\alpha_{s}}{3\pi}\sum_{i=n_{l'}}^{n_{r}}\sum_{\{j_{1}j_{2}\}} T_{R} \left[p \log \frac{m_{i}^{2}}{\mu_{R}^{2}} \Theta \left(\mu_{R}^{2} - m_{i}^{2} \right) - \Delta_{j_{1}j_{2}}^{gg} \log \frac{m_{i}^{2}}{\mu_{F}^{2}} \Theta \left(\mu_{F}^{2} - m_{i}^{2} \right) \right] \sigma_{\mathsf{LO};j_{1}j_{2}}^{(n_{r})}(\mu_{R}^{2},\mu_{F}^{2}) \\ &- \frac{\alpha}{3\pi}\sum_{i=n_{l'}}^{n_{r}}\sum_{\{j_{1}j_{2}\}} N_{C,i} Q_{i}^{2} \Delta_{j_{1}j_{2}}^{\gamma\gamma} \log \frac{m_{i}^{2}}{\mu_{F}^{2}} \Theta \left(\mu_{F}^{2} - m_{i}^{2} \right) \sigma_{\mathsf{LO};j_{1}j_{2}}^{(n_{r})}(\mu_{R}^{2},\mu_{F}^{2}) \,. \end{split}$$

- all PDFs are LO in QED, will need NLO QED PDFs
- is there a point of still having QCD only PDFs?

Conclusions

- rich phenomenology, especially in complex processes
- many ambiguities and scheme dependences
- differences usually small
 - unimportant if looking at high- p_{\perp} observables
 - important for precision observables
- long list of processes calculated by now
- approximate NLO EW corrections can be incorporated in current event generators

http://sherpa.hepforge.org

Thank you for your attention!