Automation of EW and QCD one-loop corrections with NLOX

— status update —

Christian Reuschle Florida State University LH'17 Electroweak Session

June 10, 2017

EW CORRECTIONS ARE IMPORTANT

- ▶ VBs + jets important final states in searches for NP and Higgs precision studies.
- EW corrections important in high-energy tails of distributions, where also NP effects are expected.

[NLOX + inhouse PS slicing; plot from S. Honeywell, PhD thesis]

NLO revolution:

Past 10 - 15 years. Automation of NLO QCD corrections. Breakthroughs in understanding underlying principles & implementation of efficient algorithms. NLO QCD corrections for virtually any SM process "at the push of a button".

Paradigm shift:

Dedicated ME providers (OLPs; one-loop providers) & event generators interface on the code level.

This trend continues in the EW direction:

Many OLPs have extended their range of applicability to the automation of EW corrections.

Examples:

- [OpenLoops (+Sherpa,+Munich)]: W+jets [Kallweit, Lindert, Maierhöfer, Pozzorini, Schönherr, arXiv:1412.5157], V+jets (off-shell) + jet merging [Kallweit, Lindert, Maierhöfer, Pozzorini, Schönherr, arXiv:1511.08692].
- [Recola]: Z+2 jets (off-shell) [Denner, Hofer, Scharf, Uccirati, arXiv:1411.0916], (+Sherpa): Z+jets, tī+H [Biedermann, Bräuer, Denner, Pellen, Schumann, Thompson, arXiv:1704.05783].
- ► [GoSam (+MadDipole)]: W+2 jets [Chiesa, Greiner, Tramontano, arXiv:1507.08579].
- [MG5_aMC@NLO]: *i*ī+*H* [Frixione, Hirschi, Pagani, Shao, Zaro, arXiv:1407.0823], *i*ī+*V* [Frixione, Hirschi, Pagani, Shao, Zaro, arXiv:1504.0344].

NLOX: AUTOMATED QCD & EW ONE-LOOP CORRECTIONS

Currently developed by [S. Honeywell, S. Quackenbush, L. Reina, CR]

- NLOX (<u>NLO X</u>-Sections): Early version used for QCD corrections to Wbb+jet [Reina, Schutzmeier, arXiv:1110.4438]
- ▶ Introduced as code for automated one-loop EW corrections last August (LoopFest XV). Prototype process: EW corrections to $bg \rightarrow Zb$ [Honeywell, Quackenbush, Reina, CR, Wackeroth]
- Color- and helicity-summed tree-level and one-loop matrix elements in the SM
- Approach based on Feynman diagrams; Fully renormalized EW and QCD one-loop corrections; User friendly interface; Flexible control over input parameters
- Three major parts: Python master script nlox.py
 - Diagram generation, formatting and coupling sorting: Python, QGraf
 - Simplification and generation of the squared amplitude: Python, Form
 - Generation of compilable C++ ME code; linked to custom C++ tensor reduction library TRED

NLOX: SOME FEATURES

5

NLOX has come a long way during the past 2 years:

- Color-and helicity-summed tree-level and one-loop matrix elements in the SM (up to $2 \rightarrow 4$).
 - At the moment we have two models, one with only the top massive and one with bottom and top massive.
- UV and IR regularized using dimensional regularization.
 - AG5 (fully anti-commuting γ₅ scheme, modified CDR with non-loop objects in 4D).
 - HV scheme also implemented (only 4D γ_μ's anti-commute with γ₅), but the EW CTs need modification.
- The one-loop MEs are automatically EW and QCD renormalized.
 - QCD: on-shell renormalization for massive quarks; \overline{MS} for g_s , massless quarks and gluons.
 - EW: on-shell renormalization [A. Denner, Fortschr.Phys.41:307-420,1993, new in arXiv:0709.1075].

Interface:

- User friendly Python interface, input-card based.
 - Minimal specifications: Process, born and virtual coupling powers on the squared amplitude level, tree and loop coupling powers on the amplitude level.
 - Parameters are provided through parameter files, or on the level of generated C++ code.
- CUBA-Vegas and LHAPDF interface for stand-alone external phase-space integration (of each piece).
- Flexible C++ interface
 - NLOX's building blocks can be interfaced with event generator (based on BLHA2).
 - NLOX's CUBA interface can be used to interface external Fortran or C++ code.
- Feynman diagram generator (can be very useful)
- Dedicated interface to Recola for easy PSP and X-Section level cross checks

CUBA [T. Hahn, Comput. Phys. Commun. 168 (2005) 78] LHAPDF6 [A. Buckley et al., 2014]

NLOX: SOME FEATURE

<u>6</u>

- Coupling counting in a given process (diagram level)
 - ▶ Produce QGraf model file from our own, and let it produce all possible tree- and one-loop diagrams.
 - ▶ Sort diagrams by their respective coupling powers in *e* and *g_s*, and store in diagram files (Python).
- Renormalization strategy
 - Vertex and prop. counterterms for QCD and EW corrections in terms of renormalization constants.
 - From them build UV counterterm diagrams (QGraf, Python).
 - Consistent treatment of mass counterterm insertion, etc.
- Amplitude level
 - Simplify color structures, and collect same ones (Form).
 - Perform Lorentz decomposition in case of loop diagrams (Form).
 - Simplify Dirac structures as much as possible (Form).
 - Collect terms belonging to the same Dirac string (standard-matrix-element; SME) (Form).
- Squared amplitude level
 - Produce all pairings of diagrams, collect those with the same coupling power (Python; actually happens already before amplitude stage).
 - Multiply collected color structures and evaluate (Form).
 - Multiply SMEs and simplify resulting structures as much as possible (Form).
 - Collect unique structures on the squared SME level (Form, Python).
 - Generate C++ code in terms of squared SMEs, suitable for TRed (Python).

TRED

- ▶ The Lorentz decomposition to tensor coefficients is done on the diagram level in the Form code.
- In the C++ code generation phase the list of tensor coefficients needed for the process is accumulated.
- At code execution the list of tensor coefficients is sent to TRed.
- As each tensor coefficient is added also a tree of dependencies is added, as pointers to tensor coefficients that are already in the list, down to needed scalar integrals.
- For each PSP TRed computes and caches a set of needed invariants, then computes each tensor coefficient.
- ⇒ Building up a tree of possible scalar coefficients, compute their values (QCDLoop [Ellis, Zanderighi]) as they are encountered and cache for reuse.
- Passarino-Veltman reduction [Passarino, Veltman, 1979] for 4-pt and lower
- Denner-Dittmaier reduction [Denner, Dittmaier, 2005] for 5-pt and higher

PSP COMPARISONS OF QCD CORRECTIONS

8_8

Taken from [S. Honeywell, PhD thesis].

 $u\bar{u} \rightarrow g d\bar{d}$

	Order	NLOX	Recola	GoSam
Born	$\mathcal{O}(\alpha_s^3)$	0.0002395500956426763	0.2395500956426763E-03	0.2395500956426703E-03
C_2 /Born	$\mathcal{O}(\alpha_s^4)$	-8.33333333333333333	-8.3333333333333334	-8.333333333333364
C_1 /Born	$\mathcal{O}(\alpha_s^4)$	-26.99462578393458	-26.99462578393448	-26.99462578393469
C_0 /Born	$\mathcal{O}(\alpha_s^4)$	-12.54030184367164	-12.54030184402130	-12.54030184402180

 $d\bar{d} \to ggg$

	Order	NLOX	Recola	GoSam
Born	$\mathcal{O}(\alpha_s^3)$	0.0003988730682111007	0.3988730682111019E-03	0.3988730682110958E-03
C_2 /Born	$\mathcal{O}(\alpha_s^4)$	-11.6666666666666	-11.66666666666666	-11.66666666666666
C_1 /Born	$\mathcal{O}(\alpha_s^4)$	-31.36144638199454	-31.36144638199465	-31.36144638199454
C_0 /Born	$\mathcal{O}(\alpha_s^4)$	-10.53030240397284	-10.53030240070475	-10.53030240070376

 $gg \to \gamma t \bar{t}$

	Order	NLOX	Recola	GoSam
Born	$O(\alpha_s^2 \alpha_e)$	3.024916410519366e-05	0.3024916410519305E-04	0.3024916410293219E-04
C ₂ /Born	$\mathcal{O}(\alpha_s^3 \alpha_e)$	-5.999999999999964	-5.9999999999999995	-6.00000000000009
C1/Born	$\mathcal{O}(\alpha_s^3 \alpha_e)$	-10.80787429465499	-10.80787429465735	-10.80787429465584
C_0 /Born	$\mathcal{O}(\alpha_s^3 \alpha_e)$	17.50169288566857	17.50169288601501	17.50169288601839

 $gg \rightarrow Z t \bar{t}$

	Order	NLOX	Recola	GoSam
Born	$\mathcal{O}(\alpha_s^2 \alpha_e)$	2.363537682652218e-05	0.2363537682652213E-04	0.2363537682475561E-04
C ₂ /Born	$\mathcal{O}(\alpha_s^3 \alpha_e)$	-5.9999999999999993	-5.9999999999999999999	-5.99999999999999999
C1/Born	$\mathcal{O}(\alpha_s^3 \alpha_e)$	-11.41373063878653	-11.41373063878616	-11.41373063878679
C_0 /Born	$\mathcal{O}(\alpha_s^3 \alpha_e)$	15.2795846726314	15.27958468234513	15.27958468234574

PSP COMPARISONS OF QCD CORRECTIONS

Taken from [S. Honeywell, PhD thesis].

 $gg \rightarrow h t \bar{t}$

		Order	NLOX	Recola
	Born	$O(\alpha_s^2 \alpha_e)$	7.262058203129514e-05	0.7262058203129505E-04
	C_2 /Born	$\mathcal{O}(\alpha_s^3 \alpha_e)$	-5.999999999485391	-5.999999999997610
I	C_1 /Born	$\mathcal{O}(\alpha_s^3 \alpha_e)$	-10.02836976769005	-10.02836976685641
I	C_0 /Born	$\mathcal{O}(\alpha_s^3 \alpha_e)$	15.78425523713124	15.78425527587955

 $u\bar{u} \rightarrow ht\bar{t}$

	Order	NLOX	Recola
Born	$O(\alpha_s^2 \alpha_e)$	0.0002461124726272914	0.2461124726272914E-03
C_2 /Born	$\mathcal{O}(\alpha_s^3 \alpha_e)$	-2.6666666666665627	-2.666666666667972
C1/Born	$\mathcal{O}(\alpha_s^3 \alpha_e)$	-6.039884630087075	-6.039884630094701
C_0 /Born	$\mathcal{O}(\alpha_s^3 \alpha_e)$	-5.439276782800005	-5.439276733811660

$$u\bar{u} \rightarrow d\bar{d}c\bar{c}$$

	Order	NLOX	Recola	GoSam
Born	$\mathcal{O}(\alpha_s^4)$	2.077641357247545e-09	0.2077641357247536E-08	0.2077641357247527E-08
C ₂ /Born	$\mathcal{O}(\alpha_s^5)$	-7.99999999993321	-7.999999999922142	-8.00000000000178
C1/Born	$\mathcal{O}(\alpha_s^5)$	-30.52739031171835	-30.52739031191933	-30.52739031179023
C ₀ /Born	$\mathcal{O}(\alpha_s^5)$	-33.31088743962901	-33.31088744061343	-33.31088744066471

 $u\bar{u} \rightarrow b\bar{b}t\bar{t}$

	Order	NLOX	Recola	GoSam
Born	$\mathcal{O}(\alpha_s^4)$	2.974551724275585e-09	0.2974551724275587E-08	0.2974551724275582E-08
C ₂ /Born	$\mathcal{O}(\alpha_s^5)$	-5.333333333332101	-5.333333333402811	-5.333333333333529
C ₁ /Born	$\mathcal{O}(\alpha_s^5)$	-24.27352487555908	-24.27352487545107	-24.27352487556620
C ₀ /Born	$\mathcal{O}(\alpha_s^5)$	-10.40556283358706	-10.40556283286741	-10.40556283283043

PSP COMPARISONS OF QCD CORRECTIONS

Taken from [S. Honeywell, PhD thesis].

 $gg \rightarrow b\bar{b}t\bar{t}$

	Order	NLOX	Recola	GoSam
Born	$\mathcal{O}(\alpha_s^4)$	7.857420029449179e-08	0.7857420029449088E-07	0.7857420029449035E-07
C ₂ /Born	$\mathcal{O}(\alpha_s^5)$	-8.666666666664934	-8.666666666666629	-8.666666666666680
C1/Born	$\mathcal{O}(\alpha_s^5)$	-39.41725719694034	-39.41725719694504	-39.41725719694475
C ₀ /Born	$\mathcal{O}(\alpha_s^5)$	-37.3170130240437	-37.31701302651476	-37.31701302651134

$u\bar{d} \rightarrow e^+ \nu_e b\bar{b}$

	Order	NLOX	Recola
Born	$\mathcal{O}(\alpha_s^4)$	1.608131398006336e-08	0.1608131398006333E-07
C ₂ /Born	$\mathcal{O}(\alpha_s^5)$	-2.66666666666688	-2.666666666666678
C ₁ /Born	$\mathcal{O}(\alpha_s^5)$	8.217747261112551	8.217747261112734
C ₀ /Born	$\mathcal{O}(\alpha_s^5)$	149.1755722528422	149.1755722612493

PSP COMPARISONS OF EW CORRECTIONS

Taken from [S. Honeywell, PhD thesis].

	***	,	1
	Order	NLOX	Recola
Born	$O(\alpha_s \alpha_e)$	0.3988902360788524	0.3988902360788524
C_2 /Born	$\mathcal{O}(\alpha_s \alpha_e^2)$	0	0
C_1 /Born	$\mathcal{O}(\alpha_s \alpha_e^2)$	-2.545063259569829	-2.545063259569986
C_0 /Born	$\mathcal{O}(\alpha_s \alpha_e^2)$	-66.0545642251593	-66.05456422513492

 $bg \rightarrow Zb$, with massive b-quarks

 $e^+e^- \to \mu^+\mu^-$

	Order	NLOX	Recola
Born	$O(\alpha_e^2)$	2.119697435758658	2.119697435758659
C ₂ /Born	$\mathcal{O}(\alpha_e^3)$	-3.99999999999999994	-4.000000000000001
C_1 /Born	$\mathcal{O}(\alpha_e^3)$	-18.9972544944435	-18.99725449444341
C_0 /Born	$\mathcal{O}(\alpha_e^3)$	-58.36143453973728	-58.36143454099178

$$e^+
u_e
ightarrow \mu^+
u_\mu$$

	Order	NLOX	Recola
Born	$O(\alpha_{\ell}^2)$	2.870541871568103	2.870541871568101
C_2 /Born	$\mathcal{O}(\alpha_e^3)$	-2	-1.9999999999999978
C_1 /Born	$\mathcal{O}(\alpha_{e}^{3})$	-14.55516676511649	-14.55516676511632
C_0 /Born	$\mathcal{O}(\alpha_e^3)$	-162.0819110836235	-162.0819110877675

 $\nu_e \bar{\nu}_e \rightarrow \nu_\mu \bar{\nu}_\mu$

	Order	NLOX	Recola
Born	$\mathcal{O}(\alpha_e^2)$	1.2072084184728	1.207208418472800
C ₂ /Born	$\mathcal{O}(\alpha_{e}^{3})$	0	0
C_1 /Born	$\mathcal{O}(\alpha_{e}^{3})$	-8.88888888888888962	-8.88888888888888832
C ₀ /Born	$\mathcal{O}(\alpha_{e}^{3})$	-95.3768727871602	-95.37687278933537

PSP COMPARISONS OF EW CORRECTIONS

Taken from [S. Honeywell, PhD thesis].

 $\nu_e \bar{\nu}_e \rightarrow ZZ$

	Order	NLOX	Recola
Born	$\mathcal{O}(\alpha_e^2)$	2.857891640385139	2.857891640385161
C ₂ /Born	$\mathcal{O}(\alpha_e^{\tilde{3}})$	0	0
C1/Born	$\mathcal{O}(\alpha_e^3)$	-8.88888888888888962	-8.8888888888888888
C ₀ /Born	$\mathcal{O}(\alpha_e^3)$	-169.4628850895685	-169.4628850900768

 $e^-\gamma \rightarrow e^-\gamma$

	Order	NLOX	Recola
Born	$O(\alpha_e^2)$	4.188796953987349	4.188796953987348
C ₂ /Born	$\mathcal{O}(\alpha_e^3)$	-1.99999999999999997	-2.00000000000012
C ₁ /Born	$\mathcal{O}(\alpha_{\rho}^{3})$	-5.666277876227508	-5.666277876227587
C_0 /Born	$\mathcal{O}(\alpha_e^3)$	-32.89198944630831	-32.89198944535889

 $ug \rightarrow \gamma u$

	Order	NLOX	Recola
Born	$O(\alpha_s \alpha_e)$	0.6009746489741862	0.6009746489741863
C ₂ /Born	$\mathcal{O}(\alpha_s \alpha_e^2)$	-0.888888888888888888888888888888888888	-0.888888888888888831
C ₁ /Born	$\mathcal{O}(\alpha_s \alpha_{\ell}^2)$	-1.605375588200102	-1.605375588200088
C_0 /Born	$\mathcal{O}(\alpha_s \alpha_e^2)$	-15.28911262100006	-15.28911262125787

 $e^-\gamma \rightarrow e^-\gamma\gamma$

	Order	NLOX	Recola
Born	$\mathcal{O}(\alpha_{\rho}^3)$	0.0001235020533276412	0.1235020533276406E-03
C_2 /Born	$\mathcal{O}(\alpha_{\ell}^{4})$	-1.9999999999999973	-2.0000000000361
C1/Born	$\mathcal{O}(\alpha_e^4)$	-8.454565275611175	-8.454565275608633
C_0 /Born	$\mathcal{O}(\alpha_e^4)$	-161.9278766391825	-161.9278765681010

PSP COMPARISONS OF EW CORRECTIONS

Taken from [S. Honeywell, PhD thesis].

 $\nu_e \bar{\nu}_e \to Z \nu_\mu \bar{\nu}_\mu$

13

	Order	NLOX	Recola
Born	$\mathcal{O}(\alpha_e^3)$	0.0005717565235318755	0.5717565235318735E-03
C_2 /Born	$\mathcal{O}(\alpha_e^4)$	0	0
C_1 /Born	$\mathcal{O}(\alpha_e^4)$	-13.33333333333334	-13.33333333333350
C_0 /Born	$\mathcal{O}(\alpha_e^4)$	-170.5905674296937	-170.5905674451609

$\nu_e \bar{\nu}_e ightarrow \nu_\mu \bar{\nu}_\mu \nu_\tau \bar{\nu}_\tau$

	Order	NLOX	Recola
Born	$\mathcal{O}(\alpha_e^4)$	3.551592719063201e-08	0.3551592719063195E-07
C ₂ /Born	$\mathcal{O}(\alpha_{e}^{5})$	0	0
C ₁ /Born	$\mathcal{O}(\alpha_{\rho}^{5})$	-17.7777777777776	-17.7777777777923
C ₀ /Born	$\mathcal{O}(\alpha_{\rho}^{5})$	-231.0050069559277	-231.0050069682861

Preliminary [S. Honeywell, S. Quackenbush, L. Reina, CR, D. Wackeroth]

- ► No clear notion of "EW corrections" or "QCD corrections" to a certain Born.
- Need to include all possible coupling-power combinations to a certain process.

Preliminary [S. Honeywell, S. Quackenbush, L. Reina, CR, D. Wackeroth]

One-loop amplitude level

 $g^0 e^5$ (no virtual gluons) $g^4 e^1$ (no virtual EW VBs) $g^2 e^3$ (mixed) 1084 diagrams 37 diagrams 193 diagrams

Interference level

 $\alpha_s^0 \alpha_e^4 = g^0 e^3$ tree $\times g^0 e^5$ loop pure EW virtual; not considered due to α_e^4 suppression

$$\begin{aligned} &\alpha_s^1\alpha_e^3=g^2e^1 \text{ tree } \times g^0e^5 \text{ loop all zero due to color} \\ &\alpha_s^1\alpha_e^3=g^0e^3 \text{ tree } \times g^2e^3 \text{ loop some color zeros, rest } \alpha_e^3 \text{ suppressed} \end{aligned}$$

 $\alpha_s^2 \alpha_e^2 = g^0 e^3$ tree $\times g^4 e^1$ loop some color zeros, but not all $\alpha_s^2 \alpha_e^2 = g^2 e^1$ tree $\times g^2 e^3$ loop some color zeros, but not all

 $\alpha_s^3 \alpha_e^1 = g^2 e^1 \; {\rm tree} \; {\times} g^4 e^1 \; {\rm loop} \; {\rm pure} \; {\rm QCD} \; {\rm virtual}$

We only keep $\alpha_s^2\alpha_e^2$ and $\alpha_s^3\alpha_e^1$

$Wb\bar{b}$ for proof of concept: NLO real

Preliminary [S. Honeywell, S. Quackenbush, L. Reina, CR, D. Wackeroth]

g or γ in. state, diagram level, e.g (i') $ug \rightarrow W^+ b\bar{b}d$, $g^3 e^1$ (ii') $u\gamma \rightarrow W^+ b\bar{b}d$, $g^2 e^2$ (iii') $ug \rightarrow W^+ b\bar{b}d$, $g^1 e^3$ (iv') $u\gamma \rightarrow W^+ b\bar{b}d$, $g^0 e^4$

interference level $|(iv)|^2$ $((ii)(iv)^* + (iv)(ii)^*)$ $|(ii)|^2$ $\{n,m\} = \{0,4\}$ $\{n,m\} = \{2,2\}$ $\{n,m\} = \{1,3\}$ α^4 suppressed color zero $((i)(iii)^* + (iii)(i)^*)$ $|(iii)|^2$ $\{n,m\} = \{1,3\}$ $\{n.m\} = \{3,1\}$ $\{n,m\} = \{2,2\}$ interference level $((ii')(iv')^* + (iv')(ii')^*)$ $\{n,m\} = \{0,4\}$ $\{n,m\} = \{2,2\}$ $\{n,m\} = \{1,3\}$ α_a^4 suppressed color zero $((i')(iii')^* + (iii')(i')^*)$ + $\{n,m\} = \{3,1\}$ $\{n,m\} = \{1,3\}$ $\{n,m\} = \{2,2\}$

Only keep $\alpha_s^2 \alpha_e^2$ and $\alpha_s^3 \alpha_e^1$

& no γ -induced processes & no heavy VB radiation

$Wb\bar{b}$ for proof of concept: Computational setup

Preliminary [S. Honeywell, S. Quackenbush, L. Reina, CR, D. Wackeroth]

- Virtual & Born with NLOX+Cuba
- Real with dedicated two-cutoff PS slicing code (hard-coded MEs, historically cross-checked vs MG MEs; NLOX can also produce them)
- Combination of results on histogram level
- Soft and collinear contributions:

Soft gluon-emission needs color-correlated Born MEs of contribution $g^2 e^1 \times g^0 e^3 + cc$ They are not zero, but small, so we drop them (also the corres. hard real, which is also small) \Rightarrow real $\alpha_s^2 \alpha_e^2$ only from γ -emission & real *j*-emission (glues / light quarks) only contributes at $\alpha_s^3 \alpha_e^1$

```
mb = 4.75; mt = 173;
mW = 80.385; mZ = 91.1876;
mH = 125; mu = mW+2.*mb;
// alpha_s(mu=mW+2.*mb=89.885) of CT14
alpha_s = 0.11825723468285827;
g = sqrt(4.*PI*alpha_s);
// alpha_e(0) = 0.007297352569816315
alpha_e = 1./137.035999074;
e = sqrt(4.*PI*alpha_e);
```

- ▶ α(0) EW input scheme
- CT14qed_inc_proton.00.pds
- Diagonal CKM

• Technical resonance cuts with $\delta_r = 0.25$ GeV:

$$\begin{split} m_t - \delta_r &< \sqrt{|(p_W + p_b)^2|} < m_t + \delta_r \\ m_h - \delta_r &< \sqrt{|(p_b + p_b)^2|} < m_h + \delta_r \\ m_Z - \delta_r &< \sqrt{|(p_b + p_b)^2|} < m_Z + \delta_r \end{split}$$

- PS slicing cuts: $\delta_s = 1e-3$ and $\delta_c = 1e-4$.
- $p_{\perp,\min}^{b/\bar{b}} = 25 \text{ GeV} \text{ and } |\eta^{b/\bar{b}}|_{\max} = 2.5.$
- Simple separation cut of b and \overline{b} with $\Delta R_{\min} = 0.4$.
- Simple recombination of *j*'s and γ 's with *b*'s; same ΔR_{\min} .

$Wb\bar{b}$ for proof of concept: Pseudo-resonances

- ▶ In our contributions: interferences with massive VB propagators, e.g. in g^2e^1 tree $\times g^2e^3$ loop.
- Singular when massive VB propagator momentum turns on-shell.
- ► These pop up in only one diagrammatic side of the interferences, e.g. in g^2e^3 loop but not g^2e^1 tree ⇒ there are no physical resonances, but the integrator still has to integrate over singular regions.
- Technical resonance cuts with δ_r = 0.25 GeV:

$$\begin{split} m_t - \delta_r &< \sqrt{|(p_W + p_b)^2|} < m_t + \delta_r \\ m_h - \delta_r &< \sqrt{|(p_b + p_b)^2|} < m_h + \delta_r \\ m_Z - \delta_r &< \sqrt{|(p_b + p_b)^2|} < m_Z + \delta_r \end{split}$$

 Why? No complex-mass (CM) scheme yet. Used zero widths for now.

- ▶ In the literature, for on-shell *W* the question is:
 - * W^* with CM connected to on-shell W without CM (via γ -radiation or -exchange) \rightarrow soft sing. turn into logs of widths.

- * Polarization sums: What to use for M_W for an on-shell W in CM scheme?
- Literature: In the CM scheme "the on-shell prescription should be abandoned".
- ▶ Various approaches to regulate pseudo-resonant *Z*, *H* and *t* if not using CM scheme:
 - Cut on events with large K-factor [GoSam (+MadDipole), Chiesa, Greiner, Tramontano, arXiv:1507.08579]
 - Implement technical width in critical propagators
 [OpenLoops (+Sherpa,+Munich), Kallweit, Lindert, Maierhöfer, Pozzorini, Schönherr, arXiv:1412.5157]
 - ▶ We cut on inv. masses in all contributions: no gauge inv. violation, but restricts phase space.
- So:
 - With CMs regulating soft singularities, one should not worry about soft W* → Wγ: soft sing. turn into logs of widths; they will pop up also in virt and one accepts them. Simple in PS slicing: leave out soft eikonal for W* → Wγ. How about in a subtraction scheme?
 - What about other issues if wanting to use CM, like gauge inv. violation due to polarizations of on-shell Ws? Is the only way to always run (computationally expensive) fully off-shell?

Preliminary [S. Honeywell, S. Quackenbush, L. Reina, CR, D. Wackeroth]

Checks:

- PSP check vs. Recola for all the virtual contributions. OK
- ▶ PSP check vs. in-house code for $u\bar{d} \rightarrow W^+ b\bar{b}$ virtual QCD. OK
- ▶ NLOX+Cuba sampling and integration checked for tree-level $u\bar{d} \rightarrow W^+ b\bar{b}(\gamma)$. OK
- ▶ NLOX+Cuba sampling and integration checked for $bg \rightarrow Zb$, EW and QCD corrections. OK
- NLOX+Cuba cross sections checked vs. using Recola MEs for all virtual contributions. OK
- ▶ In-house cross-reference checks of the real emission code for $W^+ b \bar{b}$. OK
- Run-time comparison for the ME evaluation of the virtual contributions: O(Recola)

Cross sections:

- $\sigma(\alpha_s^2 \alpha_e^1)$: (7.32176±0.00139) pb
- σ(α_s³α_e¹): (12.625± ~0.01) pb +172% correction wrt α_s²α_e¹
- $\sigma(\alpha_s^2 \alpha_e^2)$: (0.16114± ~0.0002) pb -2% correction wrt $\alpha_s^2 \alpha_e^1$

- $\sigma(\alpha_s^3 \alpha_e^1)_{\text{virt}}$: (-5.9828±0.0012) pb
- $\sigma(\alpha_s^3 \alpha_e^1)_{\rm real, \ soft/coll}$: (-52.36649 \pm 0.01) pb

- $\sigma(\alpha_s^3 \alpha_e^1)_{\rm real, \, hard}$: (70.97414 \pm 0.01) pb
- $\sigma(\alpha_s^2 \alpha_e^2)_{\rm virt}$: (-0.22769 \pm 0.0005) pb
- $\sigma(\alpha_s^2 \alpha_e^2)_{\rm real, \ soft/coll}$: (-0.51553 \pm 0.0002) pb
- $\sigma(\alpha_s^2 \alpha_e^2)_{\rm real, \, hard}$: (0.58208±0.00015) pb

Preliminary [S. Honeywell, S. Quackenbush, L. Reina, CR, D. Wackeroth]

- $\alpha_s^2 \alpha_e^1$ "Born" & $\alpha_s^3 \alpha_e^1$ "QCD correction"
- ▶ p⊥ of W⁺(pT_3): 350% correction at 500 GeV
- η of W^+ (rap_3): large corrections in $|\eta|$

Preliminary [S. Honeywell, S. Quackenbush, L. Reina, CR, D. Wackeroth]

- $\alpha_s^2 \alpha_e^1$ "Born" & $\alpha_s^3 \alpha_e^1$ "QCD correction"
- ▶ p⊥ of hardest (pT_6) and 2nd hardest (pT_7) b jet
- Corrections to hardest b-jet p_{\perp} increasing
- ► Corrections to 2nd hardest *b*-jet *p*_⊥ decreasing

Preliminary [S. Honeywell, S. Quackenbush, L. Reina, CR, D. Wackeroth]

- $\alpha_s^2 \alpha_e^1$ "Born" & $\alpha_s^2 \alpha_e^2$ "EW correction"
- p_{\perp} of W^+ (pT_3): -15% correction at 500 GeV
- η of W^+ (rap_3): small 2% changes in $|\eta|$

Preliminary [S. Honeywell, S. Quackenbush, L. Reina, CR, D. Wackeroth]

- $\alpha_s^2 \alpha_e^1$ "Born" & $\alpha_s^2 \alpha_e^2$ "EW correction"
- ▶ p⊥ of hardest (pT_6) and 2nd hardest (pT_7) b jet
- ► Corrections to hardest *b*-jet *p*_⊥: -10% at 500 GeV
- ► Corrections to 2nd hardest *b*-jet *p*_⊥: -10% at 500 GeV

Preliminary [S. Honeywell, S. Quackenbush, L. Reina, CR, D. Wackeroth]

- $\alpha_s^2 \alpha_e^2$ "EW correction" on top of $\alpha_s^2 \alpha_e^1$ "Born" + $\alpha_s^3 \alpha_e^1$ "QCD correction"
- "QCD correction" dominates. Still, p_{\perp} of W^+ (pT_3): -4% correction at 500 GeV
- Also η of W^+ (rap_3) still shows small 2% changes

Going exclusive: Requiring exactly 2 jets should enhance the "EW corrections" wrt the "QCD corrections". Going inclusive: Adding γ -induced and heavy VB radiation would diminish the effects of the "EW corrs."?

Preliminary [S. Honeywell, S. Quackenbush, L. Reina, CR, D. Wackeroth]

- $\alpha_s^2 \alpha_e^2$ "EW correction" on top of $\alpha_s^2 \alpha_e^1$ "Born" + $\alpha_s^3 \alpha_e^1$ "QCD correction"
- "QCD correction" dominates. Still, p_⊥ of hardest b-jet (pT_6): -3% correction at 500 GeV
- ▶ p⊥ of 2nd hardest b-jet (pT_7): Even -10% drop recognizable (more statistics needed)

Going exclusive: Requiring exactly 2 jets should enhance the "EW corrections" wrt the "QCD corrections". Going inclusive: Adding γ -induced and heavy VB radiation would diminish the effects of the "EW corrs."?

25 🕽

SUMMARY & OUTLOOK

NLOX

- Automated QCD & EW one-loop corrections (up to 2 → 4 in the SM)
- Proof of principle: W⁺bb̄ EW+QCD corrections (only parts; full study will follow)

Work in progress

- Increase efficiency some more
- Finish OLP interface; test with event generators
- Extend the reduction library
- Add accuracy checks
- Implement complex-mass scheme
- Phenomenological studies and publication of code

In the long-run

- Automate PS slicing, for fully integrated QCD & EW NLO framework
- On the other hand: implement dipole subtraction
- Organization in terms of color amplitudes
- Spin-helicity amplitudes

Open questions on my side

• EW input (only $\alpha_e(0)$, mixed scheme with $\alpha_e(G_\mu)$ and $\alpha_e(0)$, ...)?

- On-shell W production and CM scheme?
- Including / not including γ-initiated or W/Z-radiation?

THANK YOU