Les Houches 2017 SM N[×]LO, NLO (multi-legs+EW) WG TH summary

Stefan Kallweit

Les Houches Workshop Series "Physics at TeV colliders" 2017 Session I Les Houches, France, June 5–14, 2017

Outline

NNLO IR subtraction schemes

- Antenna subtraction
- Iterative subtraction
- N-jettiness subtraction/slicing

Dethods to provide results from NNLO calculations

- N-tuples
- Fast grid technologies

3 NLO EW automation

- Status of EW automation
- General issues in EW calculations

Amplitudes and ingredients of higher-order calculations

- Distribution of multi-loop results
- Four-dimensional methods
- Progress in two-loop amplitudes

Wishlist

NNLO IR subtraction schemes

Different NNLO IR subtraction schemes are on the market and have been (partially) implemented into public programs:

- Antenna subtraction (NNLOJET) [talk by J. Pires]
- Sector-improved residue subtraction (Top++, ...)
- Iterative subtraction [talk by R. Röntsch]
- $q_{\rm T}$ subtraction/slicing (HqT, DYNNLO, 2γ NNLO, MATRIX, ...)
- N-jettiness subtraction/slicing (MCFM, GENEVA, ...) [talk by F. Tackmann]
- Projection to Born/structure function approach
- Colorful subtraction

Different approaches lead to (dis-)advantages of the respective methods:

- Restriction to special process classes/kinematics
- Dependence on cut parameters in slicing approaches
- More or less staightforward automation

Antenna subtraction

- Implementation in NNLOJET program
- Applied to $pp \rightarrow jj/Hj/Zj$ production (also: $pp \rightarrow H/W/Z$, $ep \rightarrow jj$)
- (Nearly) local subtraction method with analytic IR pole cancellation
- No additional building blocks needed for higher multiplicities (massless quarks)
- Many subtraction terms needed, bookkeeping complicated
- Colour-ordered amplitudes needed (not easily available from public tools)

[talk by J. Pires]

Antenna subtraction at work

Double unresolved emission

- · Generate phase space trajectories that approach singular region of the phase space
- · Infrared behaviour of subtraction term mimics the behaviour of the matrix element

$$R = \frac{d\sigma_{NNLO}^R}{d\sigma_{NNLO}^S} \xrightarrow{l_g, k_g \to 0} 1$$

Pros and cons

Antenna subtraction

- local method with phase space averaging → good control on the numerical accuracy of the final result, RR, RV, VV separately finite
- analytic IR pole cancellation at NNLO → good control on the correctness of the pole cancellation
- · double precision
- universal method works for general jet multiplicity → no additional building blocks needed
- pp→jj,Hj,Zj @ NNLO
- · subtraction terms for a fixed colour structure reusable
- involves many mappings/subtraction terms as expected for a local method
 → needs caching system to store mappings

Iterative subtraction

- Extension of FKS to NNLO by adding sectors to separate singularities
- Simplified implementation focussed on gauge-invariant matrix elements
- Local; process independent; clear origin of singularities
- Explicit pole cancellation; 4-dimensional matrix elements sufficient
- Numerical pole cancellation; intermediately not Lorentz invariant
- Some work required for extension to colored final states and masses

<u>skit</u>

Soft and collinear singularities

BUT: we are dealing with gauge-invariant matrix elements (as opposed to individual Feynman diagrams):

- · Can regulate soft and collinear singularities independently.
- Order energies $E_4 > E_5$: either double soft (\$) or gluon 5 soft.
- · Regulate soft singularities:

$$\begin{split} \left\langle F_{LM}(1,2,4,5) \right\rangle &= \left\langle \mathscr{T}F_{LM}(1,2,4,5) \right\rangle + \left\langle S_5(I-\mathscr{T})F_{LM}(1,2,4,5) \right\rangle \\ &+ \left\langle (I-S_5)(I-\mathscr{T})F_{LM}(1,2,4,5) \right\rangle. \end{split}$$

then regulate collinear singularities in each term

<u>skit</u>

Combining partitions

Rename the resolved gluon 4 in the first term and combine:

$$\begin{split} & \left\langle \left[I - S_{3}\right] \left[I - S_{3}\right] \left[Q_{4_{1}} | dy_{3} | w^{4,25} + C_{3_{1}} | dy_{4} | w^{1,24} F_{LM}(1,2,4,5) \right\rangle \\ & = - \frac{[\alpha_{*}] s^{-+}}{\epsilon} \int_{0}^{1} \frac{dz}{(1-z)^{1+2i\epsilon}} \langle \hat{w}_{3||1}^{10,24} \left(\hat{\mathcal{P}}_{qq}^{(-)}(z) \left[I - S_{4}\right] F_{LM}(z \cdot 1,2,4) + \right. \\ & \left. \left. \left. \left(d_{2} - z \right) 2 C_{F} \left[I - S_{4}\right] F_{LM}(1,2,4) + \theta(z_{4} - z) \hat{\mathcal{P}}_{qq}^{(-)}(z) S_{4} F_{LM}(z \cdot 1,2,4) \right. \right) \right\rangle . \end{split}$$

Similar simplifications on combining terms from **double** & **triple** collinear partitions.

Les He	ouches	
6 June	2017	

10

Les Houches 6 June 2017 [talk by R. Röntsch]

N-jettiness subtraction/slicing

- Differential 0-jettiness subtractions implemented in GENEVA Monte Carlo
- Global 0-/1-jettiness in MCFM 8: V/H, VH, $\gamma\gamma$; $V/H/\gamma$ +jet
- Not local in slicing approach; result dependent on slicing parameter $au_{
 m cut}$
- au_{cut} dependence can be well controlled by
 - power corrections that can be analyzed and computed in SCET
 - Born+jet NLO calculations that remains stable deep into the IR-singular region
- Straightforward to be automated if NNLO beam/jet/soft functions are known

NNLO IR subtraction schemes

- Discussion of different IR subtraction schemes
- Drell-Yan as benchmark between applicable schemes
 - inclusive results
 - maybe a benchmark distribution
 - runtime estimate (only partially useful, as process is quite trivial)

Methods to provide results from NNLO calculations

						Incroduc	cory cark	by G. Heinnenj
				NN	LO			
		na						γ + Jet
		ina						$ep \rightarrow \text{jet}$
	qt						H.	$H(m_t \to \infty)$
	N-jet	tiness				1	WW	HW. HZ
	secto					2	ZH	$\gamma\gamma$
	o proje	ction to	Born				ZZ	W + jet
	colorf	ul				$Z\gamma$	$W\gamma$	Z + jet
								$ep \rightarrow 2 {\rm jets}$
				diff W			pp	$ ightarrow 2 { m jets}$
			diff	H	$\gamma \gamma$		Z -	+ jet
					WII		H	$+ jet (m_t \to \infty)$
					VV 11		H + i	et $(m_t \to \infty)$
	$\sigma_{\rm tot} W$	VH		$\sigma_{\rm t}$	ot Hjj (VB	F)	H + i	et $(m_t \to \infty)$
	$\sigma_{\rm tot} H$		$e^{+}e^{-}$ -	→ 3 jets			$t\bar{t}$	
σ_{t}	ot W/Z		e^+e^- -	\rightarrow event sh	apes	single	top H	
							e^+	$e^- \rightarrow 3 {\rm jets}$
01	2003	2005	2007	2009	2011	2013	2015	2017

[introductory talk by G. Heinrich]

How can these NNLO results be made fully available for non-authors?

- Public NNLO codes to be run by anyone
- nTuples output written by the programs, to be provided to anyone
- Interface to FASTNLO/APPLGRID/APPLFASTNNLO

Stefan Kallweit (CERN)

nTuples

- nTuples have proven useful for NLO can they be as useful for NNLO?
- Same advantages and same disadvantages but amplified:
 - Programs are more complex, i.e. more runtime can be saved
 - Larger files: more pieces in the calculation, more logarithm coefficients
- Main question: is the size reasonable?
 - \circ studied on $e^+e^-
 ightarrow$ 3jets, hadron–hadron in development
 - modifications to reduce required storage under investigation

[talk by D. Maitre]

Using mapping information

- · The most space-consuming part is the double real part
 - More final state momenta
 - Need much statistics because of subtraction terms
- For each real-real phase-space point we have many subtraction terms
- Each of them has a different set of momenta given by a $(n+2) \rightarrow n \text{ or } (n+1) \rightarrow n \text{ map}$
- We can save much space if we simply record the mapping that was used instead of the momenta
- · The downside is that
 - there is more calculation at the moment of reading the nTuple
 - More coupling between nTuple file and code that produced it

Fast grid technologies

- FASTNLO and APPLGRID provide intermediate output formats
 - that allow for a-posteriori variation of scales and PDFs,
 - that need the original code to be run only once.
- Fast a-posteriori convolution, original calculation reproduced very precisely
- Analysis cuts and observables cannot be changed a-posteriori
- APPLFAST-NNLO interface to NNLOJET has been established.

Methods to provide results from NNLO calculations

- APPLFast Tables: come up with common interface for input to Tables, such that N(N)LO code providers can stick to standards as guidelines for the output format they provide (Les Houches APPLcord?)
- Working out standards for communication between nTuples at NNLO and users
- Working out standards for output format of (NNLO) fixed order results to pass to parton showers (at runtime)

NLO EW automation

Status of NLO EW matrix element generators (and their implementation into full (parton-level) Monte Carlo programs):

• GOSAM [talk by N. Greiner]

• Sherpa+GoSam

- NLOX [talk by C. Reuschle]
- MADLOOP [talk by V. Hirschi]
- OPENLOOPS [talk by M. Schönherr]

- MG5_AMC@NLO
- Herwig+OpenLoops
- Munich+OpenLoops
- POWHEG+OPENLOOPS
- Sherpa+OpenLoops
- "IN-HOUSE MC" + RECOLA
- Sherpa+Recola

RECOLA [talk by M. Pellen]

• ...(?)

General issues in EW corrections (NLO EW and subleading orders)

- Democratic clustering (photons+QCD partons)
- Treatment of photons (IS/FS/identified)
- Realistic uncertainty estimate for EW corrections
 - Estimate of missing higher EW orders
 - Additive/multiplicative combination of QCD and EW results
- Treatment of (pseudo-)resonances
 - in particular pseudo-resonances in interference contributions without CMS
 - actual resonances in CMS only potential numerical problem at fixed order
- Issues with the complex mass scheme
 - complex α wrong in subleading EW corrections: consistent use of $|\alpha|$?
 - renormalization of (stable) top in presence of complex W mass

- EW correction large in high-energy tails of distributions (Sudakov regime)
- NNLO Sudakov corrections dominant source of EW uncertainty
 - \hookrightarrow use in uncertainty estimate, or even include as nNLO EW
- NNLO Sudakov corrections also relevant for combined QCD–EW uncertainty
 - \hookrightarrow multiplicative approach as nominal prediction, plus uncertainty estimate
- But: Sudakov corrections do not dominate EW uncertainties everywhere!

Democratic clustering

- Exemplary situation: $gq \rightarrow gq + \gamma$ contribution to di-jet production
- ullet QCD and QED singularity structures favours democratic treatment of ${\it q}, {\it g}, {\it \gamma}$
 - $\,\hookrightarrow\,$ implies presense of $\gamma {\it q}$ initial state at Born level
- But: Experiment would not consider photon-jets as jets
 - $\,\hookrightarrow\,$ democratic clustering, and discard jets with $E_{\gamma} > z_{\rm cut} E_{\rm jet}$
- But: E_γ not well-defined in perturbative QED $(\gamma
 ightarrow qar{q})$
 - \hookrightarrow fragmentation function approach . . .

[talk by V. Hirschi]

SLIDES ONWARDS FROM S.FRIXIONE]

Need to compute "QED corrections": then, include photon emission

But: soft photons induce singularities; one must treat them inclusively

Solution: sum over all configurations

However: (QCD) IR safety demands $E_{gluon} \rightarrow 0$ to be a smooth limit. This implies a $q\gamma$ final state must exist at the Born level. That's OK: treat q's, g's and γ 's democratically

ISSUES WITH DEMOCRATIC JETS

But experimentalists typically do not consider photon-jets as jets.

Solution: cluster democratically, but discard jets where $E_{\gamma} > z_{cut}E_{jet}$

However: E_{γ} is not a well-defined quantity in pQED ($\gamma \rightarrow q\bar{q}$

This is a problem only at $\Sigma_{\rm NLO,3}$ and beyond (at least two EW couplings are needed): in principle it can be ignored at NLO EW.

Still, it is much cleaner to devise a solution which is universally valid

Valentin Hirschi, ETHZ	Mixed NLO QCD-EW	Les Houches	09.06.2017	Valentin Hirschi, ETHZ	Mixed NLO QCD-EW	Les Houches	09.06.2017
Stefan Kallweit (CERN)		SM N ^X LO WG TI	H summary	Les Houches worksho	op, June 14, 2017		15 / 26

Treatment of photons

• Distinction between different photon types

- initial state: unresolved \rightarrow short-distance scheme (G_{μ} , $\alpha(m_Z)$, \bar{MS} , ...)
- final state: identifed ightarrow lpha(0) scheme, no $\gamma
 ightarrow far{f}$ splittings
- final state: democratic \rightarrow short-distance scheme, include $\gamma \rightarrow f\bar{f}$ splittings
 - $\,\hookrightarrow\,$ identify photon through fragmentation function

• Other descriptions could also work reasonably.

Issues with the complex mass scheme

- $\bullet~{\rm Complex}~\alpha$ spoils IR factorization and KLN cancellation
 - $\,\hookrightarrow\,$ only in subleading (below NLO EW) corrections
- possible solution: assign a phase to G_{μ} to make α real?
- Example with stable top quarks and unstable W bosons
 - $\,\hookrightarrow\,$ imaginary residue of UV pole remains uncancelled
- solution: always consider fully decayed particles?

HOW TO HANDLE THE COMPLEX PHASE OF α?

In the G_µ-scheme for example, α is defined as:

 $\alpha^{(CMS,G_{\mu})} = \frac{\sqrt{2}G_I}{\pi} \frac{M_W^{(CMS)2} - M_W^{(CMS)4}}{M_Z^{(CMS)2}} \longrightarrow \text{Should be complex!}$

+ In practice the complex phase is irrelevant because the matrix elements factorize $|\alpha|$. However, in subleading blobs, one can have:

COMPLEX MASS SCHEME ISSUES

[talk by V. Hirschi]

. Is there anyway to salvage the CMS with unstable final states?

Relevant case: $p p > t t \sim (+jets)$

p p > t t~ : Can set all widths to zero, so OK.

 $p p > t t \sim j$: Must retain the weak bosons width. Is **WT=0** ok?

Probably not! Because the following bubble has an imaginary residue of UV pole that remains uncancelled:

Any easy solution within the CMS? Or is one forced to always consider fully decayed particles?

Notice that the top width offshell effect $(O(\Gamma_t/m_t))$ are anyway of the same order.

Valentin Hirschi, ETHZ	Mixed NLO QCD-EW	Les Houches	09.06.2017	Valentin Hirschi, ETHZ	Mixed NLO QCD-EW	Les Houches	09.06.2
itefan Kallweit (CERN)		SM N ^X LO WG TH					

Pseudo-resonances arise in QCD–EW interference contributions

(no squared propagator; in CMS regularized by respective particle width)

- Ways out if external on-shell W bosons need to be used (CMS not applicable):
 - introduce small (gauge-invariance breaking) regulator width
 - apply technical phase-space cuts around the propagator poles

Other (best?) way out: Never treat unstable particles as stable external states!

[talk by C. Reuschle] Wbb FOR PROOF OF CONCEPT: PSEUDO-RESONANCES 18 NLO EW corrections to VBS ▶ In our contributions: interferences with massive VB propagators, e.g. in g²e¹ tree × g²e³ loop. Singular when massive VB propagator momentum turns on-shell These pop up in only one diagrammatic side of the interferences, e.g. in p²e³ loop but not p²e¹ tree there are no physical resonances, but the integrator still has to integrate over singular regions. $pp \rightarrow \mu^+ \nu_\mu e^+ \nu_e jj\gamma$ Technical resonance cuts with δ_r = 0.25 GeV: In the literature, for on-shell W the question is: * W* with CM connected to on-shell W without CM $m_l - \delta_r < \sqrt{|(p_W + p_b)^2|} < m_l + \delta_r$ (via γ -radiation or -exchange) \rightarrow soft sing. turn into logs of widths $m_h - \delta_r < \sqrt{|(p_h + p_h)^2|} < m_h + \delta_r$ * Polarization sums: What to use for M_w for an $m_Z - \delta_t < \sqrt{|(p_h + p_h)^2|} < m_Z + \delta_t$ on-shell W in CM scheme? Literature: In the CM scheme "the on-shell Why? No complex-mass (CM) scheme vet. prescription should be abandoned". Lised zero widths for now (with up to 8-point functions) Various approaches to regulate pseudo-resonant Z, H and t if not using CM scheme: Cut on events with large K-factor [GoSam (+MadDipole), Chiesa, Greiner, Tramontano, arXiv:1507.08579] Implement technical width in critical propagators IOpenLoops (+Sherpa,+Munich), Kallweit, Lindert, Maierhöfer, Pozzorini, Schönherr, arXiv:1412.51571

- We cut on inv. masses in all contributions: no gauge inv. violation, but restricts phase space.
- So:
- With CMs regulating soft singularities, one should not worry about soft W^{*} → Wγ; soft sing, turn into logs of widths; they will pop up also in virt and one accepts them. Simple in PS slicing: leave out soft eikonal for $W^* \rightarrow W\gamma$. How about in a subtraction scheme?
- What about other issues if wanting to use CM. like gauge inv. violation due to polarizations of on-shell Ws? Is the only way to always run (computationally expensive) fully off-shell?

[talk by M. Pellen]

 \rightarrow NLO EW corrections are of order $O(\alpha^7)$ → Include all possible real photonic corrections

→ Include all virtual corrections

NLO EW automation

- Discussion and solutions for the before-mentioned topics (and relates ones)
 suggestion for realistic EW (and mixed QCD-EW) uncertainty estimates
- Numerical investigation of the impact of "democratic clustering" against other possible prescriptions, on di-jet or $W(\rightarrow l\nu)$ +jet (or even $W(\rightarrow l\nu)$ +2jets) as a sample process.
- Numerical investigation of the impact of different pseudo-resonance treatments in processes with external vector bosons treated as stable, on *W*+2jets as a sample process

Amplitudes and ingredients of higher-order calculations

[introductory talk by G. Heinrich]

Prospects in amplitudes and four-dimensional approaches:

- Distribution of multi-loop results
- Four-dimensional methods at NLO/NNLO
- Progress in two-loop amplitudes

Distribution of multi-loop results

- Idea to build a database for master integrals
 - easy search for Feynman graphs
 - links to literature
 - explicit results ready for download
- Extension beyond only integrals proposed (e.g. multiloop form factors)

 \Rightarrow Loopedia

 \Rightarrow use **UFO** format

[talk by V. Hirschi]

Stefan Kallweit (CERN)

SM N^XLO WG TH summary Les Houches workshop, June 14, 2017

tin Hirschi, ETHZ

The Loop-Tree Duality

- New algorithm/regularization scheme for higher-orders in perturbative QFT
- Local cancellation of IR and UV singularities (IR unsubtracted and 4-dim.)
- Simultaneous generation of real and virtual corrections advantageous, particularly for multi-leg processes (at NLO level, so far).
- Outlook: automation and fully differential multi-leg at NNLO (and beyond)

Comparison with DREG				
DREG	LTD / FDU			
 Modify the dimensions of the space-	 Computations without altering the			
time to d = 4-2e	d=4 space-time dimensions ¹			
Singularities manifest after	Singularities killed before			
integration as 1/e poles: IR cancelled through suitable	integration: Unsubtracted summation over			
subtraction terms, which need	degenerate IR states at			
to be integrated over the	integrand level through a			
unresolved phase-space UV renormalized	suitable momentum mapping UV through local counter-terms			
 Virtual and real contributions are	 Virtual and real contributions are			
considered separately: phase-space	considered simultaneously: more			
with different number of final-state	efficient Monte Carlo implementation			
particles	and fully differential			

¹ Gnendiger et al., To d, or not to d: Recent developments and comparisons of regularization schemes, arXiv:1705.01827

F. Driencourt-Mangin

Les Houches Workshop Series 2017

[talk by F. Driencourt-Mangin]

Loop amplitudes: The numerical approach

- Local subtraction terms for loop amplitudes
- Loop-tree duality to re-write cyclic-ordered one-loop amplitude
- Contour deformation
- Cancellations at the integrand level (with UV divergences, non-zero spins and initial-state partons)
- only simple integrals analytically, to reproduce the finite terms associated to a given renormalisation/factorisation scheme

[talk by S. Weinzierl]

Cancellations at the integrand level

$$\int_{n+1} d\sigma^n + \int_n d\sigma^v = \int_{n+1} \left(d\sigma^n - d\sigma_{ik}^n \right) + \int_{n} (1+L) \otimes d\sigma^n + \int_{n-1} \int_{n} \left(d\sigma^v - d\sigma_{iv}^n \right)$$
• At NLO both $d\sigma_{ik}^n$ and $d\sigma_{iv}^n$ are easily integrated analytically.
• This is no longer true at NNLO and beyond.

$$\int_{a} (\mathbf{I} + \mathbf{L}) = \int_{a} \left[\int_{1} d\sigma_{\mathrm{R}}^{\mathrm{A}} + \int_{\mathrm{hop}} d\sigma_{\mathrm{V}}^{\mathrm{A}} + d\sigma_{\mathrm{CT}}^{\mathrm{V}} + d\sigma^{\mathrm{C}} \right]$$

- Unresolved phase space is (D-1)-dimensional.
- Loop momentum space is D-dimensional
- dσ^V_{CT} counterterm from renormalisation
- dσ^C counterterm from factorisation

Amplitudes and ingredients of higher-order calculations

- Standards for public multi-loop results: come up with Drell-Yan as an example for tool-chain at various levels in UFO format
 - Merge this approach with the Loopedia project (original plan: only integrals)?
- Working out standards for providing two-loop amplitudes to combine them with other building blocks making up a NNLO fixed-order calculation
- Reasonable project on four-dimensional methods under discussion

Progress in two-loop amplitudes

 $\bullet~$ "State of the art is moving towards 2 \rightarrow 3 processes"

- Update the processes computed since release since the last wishlist (correct for out-dated process information, make details more precise)
- Add new required processes to the new wishlist
- Provide references for the calculations
- Provide links to relevant measurements
- Add information on required experimental precision
- Promote the Les Houches wishlist to a reference for SM processes, saying which fixed-order calculations are available at which order (make sure that also applied approximations are visible)