Higgs boson pair production in gluon fusion at full NLO

Gudrun Heinrich

Max Planck Institute for Physics, Munich

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

 full mass dependence in NLO -10% real radiation ("FTapprox")

Frederix, Hirschi, Mattelaer, Maltoni, Torrielli, Vryonidou, Zaro '14; Maltoni, Vryonidou, Zaro '14

NNLO in $m_t \rightarrow \infty$ limit: +20%

- total xs NNLO De Florian, Mazzitelli '13
- including all matching coefficients Grigo, Melnikov, Steinhauser '14
- supplemented with $1/m_t$ expansion: Grigo, Hoff, Steinhauser '15
- soft gluon resummation NNLL matched to NNLO De Florian, Mazzitelli '15 +9%
- differential NNLO De Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev '16

(Werner-Heisenberg-Institut

NNLO in $m_t \rightarrow \infty$ limit: +20%

- total xs NNLO De Florian, Mazzitelli '13
- including all matching coefficients Grigo, Melnikov, Steinhauser '14
- supplemented with $1/m_t$ expansion: Grigo, Hoff, Steinhauser '15
- soft gluon resummation NNLL matched to NNLO De Florian, Mazzitelli '15 +9%
- differential NNLO De Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev '16

NLO calculation with full top mass dependence

Borowka, Greiner, GH, Jones, Kerner, Schlenk, Schubert, Zirke '16

4 independent scales s12, s23, mH, mt all integrals calculated **numerically** with

SecDec

Borowka, GH, Jones, Kerner, Schlenk, Zirke '15 Borowka, GH, Jahn, Jones, Kerner, Schlenk, Zirke '17

 q_T resummation NLL+NLO

Ferrera, Pires '16

calculation: building blocks

- amplitude generation with GoSam-2loop (python, QGRAF, FORM) [N.Greiner, S.Jahn, S.Jones, M.Kerner]
- amplitude reduction with Reduze [C. Studerus, A. v.Manteuffel]
- non-planar integrals computed mostly without reduction
- all integrals calculated numerically with SecDec
- total number of integrals:
 - before reduction: ~10000, after reduction ~330, after sector decomposition 11244 (3086 non-planar)
 - used finite basis for planar integrals
- real radiation:
 - (a) GoSam-1L + Catani-Seymour dipole subtraction
 - (b) GoSam-1L + POWHEG

http://secdec.hepforge.org

SecDec is hosted by Hepforge, IPPP Durham

Download version 1.1 of pySecDec as pySecDec-1.1.tar.gz. The manual is available here.

The first release version of pySecDec can be downloaded as pySecDec-1.0.tar.gz. The manual is available here. See also the corresponding paper arXiv:1703.09692.

Version 3.0 of the program can be downloaded as SecDec-3.0.9.tar.gz. The manual for this version is available here.

 algorithm:
 T. Binoth, GH '00

 version 1.0:
 J. Carter, GH '10

 version 2.0:
 S.Borowka, J. Carter, GH '12

 version 3.0:
 S.Borowka, GH, S.Jones, M.Kerner, J.Schlenk, T.Zirke '15

 pySecDec:
 S.Borowka, GH, S.Jahn, S.Jones, M.Kerner, M.Kerner, J.Schlenk, T.Zirke '17

top mass effects

 $\mu_0 = m_{HH}/2$ total cross sections at 14 TeV

	$\sigma_{\rm LO}[{\rm fb}]$	$\sigma_{\rm NLO}[{\rm fb}]$	$\sigma_{\rm NNLO}[{\rm fb}]$
IEFT	$17.07^{+30.9\%}_{-22.2\%}$	$31.93^{+17.6\%}_{-15.2\%}$	$37.52^{+5.2\%}_{-7.6\%}$
3-i. HEFT	$19.85^{+27.6\%}_{-20.5\%}$	$38.32^{+18.1\%}_{-14.9\%}$	
FT_{approx}	$19.85^{+27.6\%}_{-20.5\%}$	$34.26^{+14.7\%}_{-13.2\%}$	
ull m_t dep.	$19.85^{+27.6\%}_{-20.5\%}$	$32.91^{+13.6\%}_{-12.6\%}$	

PDF4LHC15_nlo_30_pdfas $\sigma'_{NNLL} = \sigma_{NNLL} + \delta_t \, \sigma_{NLO}^{\text{HEFT}} = 39.64^{+4.4\%}_{-6.0\%}$ $m_H = 125 \,\text{GeV}, \, m_t = 173 \,\text{GeV}$ uncertainties: $\mu_{R,F} \in [\mu_0/2, 2\mu_0]$ (7-point variation) Max-Planck-Institut für Physik (Werner-Heisenberg-Institut

MAX-PLANCK-GESELLSCHAFT

Higgs boson pair invariant mass

for large invariant masses:

Born-improved NLO HEFT overestimates by about 50%, FTapprox by about 40% (at 14 TeV, worse at 100 TeV)

top quark loops resolved --> HEFT has wrong scaling behaviour at high energies

top mass effects: II. distributions

transverse momentum of one of the Higgs bosons

Born-improved NLO HEFT very poor at large pT

scaling behaviour

MAX-PLANCK

NLO-improved NNLO HEFT

NNLO HEFT:

MAX-PLANCK-GESELLSCHAFT

De Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev, arXiv:1606.09519

what we did in arXiv:1608.04798:

bin-by-bin rescaling at observable level by NNLO HEFT K-factor

(Werner-Heisenberg-Institut)

GH, S.Jones, M.Kerner, G.Luisoni, E.Vryonidou 1703.09252

- avoid evaluation of two-loop amplitude for each phase space point
- two-loop amplitude depends only on $\hat{s}, \hat{t} \quad (m_t, m_H \text{ fixed})$

construct 2-dim grid

variable transformation to achieve more uniform distribution

$$x = f(\beta(\hat{s})), \quad c_{\theta} = |\cos \theta| = \left| \frac{\hat{s} + 2\hat{t} - 2m_{H}^{2}}{\hat{s}\beta(\hat{s})} \right| \quad \beta(\hat{s}) = \sqrt{1 - 4m_{H}^{2}/\hat{s}}$$

- choose f according to cumulative distribution of phase space points
- use SciPy package for interpolation [Clough, Tocher]

combination with both POWHEG and MadGraph5_aMC@NLO

- different matching schemes
- same shower (Pythia 8.2)
- no Higgs decays, no hadronisation

combination with both POWHEG and MadGraph5_aMC@NLO

- different matching schemes
- same shower (Pythia 8.2)
- no Higgs decays, no hadronisation

POWHEG User-Process-V2/ggHH

combination with both POWHEG and MadGraph5_aMC@NLO

- different matching schemes
- same shower (Pythia 8.2)
- no Higgs decays, no hadronisation

POWHEG User-Process-V2/ggHH

combination with Herwig 7.1 and Sherpa is on the way

compare fixed order and showered results

compare fixed order and showered results

dependence on shower starting scale

compare different approximations

shower effects large but order(s) of magnitude smaller than difference to Born-improved HEFT

MAX-PLANCK-GESELLSCHAFT

Summary

- Born-improved HEFT approximation fails to describe tails of distributions
- FTapprox does a decent job for distributions/regions dominated by real radiation
- mass effects more important than shower effects
- numerical methods for 2-loop integrals can prove very useful in cases where analytic results are not available

(Werner-Heisenberg-Institu

MAX-PLANCK-GESELLSCHAFT

"NNLO" effects (HEFT)

hdamp limits amount of
exponentiated hard radiation
$$R_{\rm sing} = R \times F ,$$
$$R_{\rm reg} = R \times (1 - F)$$
$$F = \frac{h^2}{(p_T^{\rm hh})^2 + h^2}$$

basic HEFT approximation

LHE: Les Houches event level default hdamp= ∞ close to NNLO in the tail

compare POWHEG and MG5_aMC@NLO

variation of triple Higgs coupling

$$\lambda = \lambda_{BSM} / \lambda_{SM}$$

cross section has a minimum around $\lambda=2~$ due to destructive interference between diagrams containing $~\lambda~$ and box-type diagrams

Max-Planck-Institut für Physik

(Werner-Heisenberg-Institut)

variation of triple Higgs coupling

distributions have discriminating power

full analysis requires inclusion of other operators, e.g. $t\bar{t}hh$ coupling

MAX-PLANCK-GESELLSCHAFT