

BSM Tools: Theory

Peter Richardson

CERN TH & IPPP Durham

Les Houches: 15th June

Outline

- Evolution of the Tools Group
- Event Generation
- Recasting and Analysis
- Other tools
- Overlap with the 1st session.

Evolution of the Tools Group

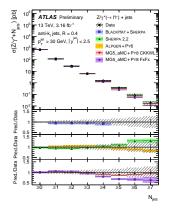
- There have been huge developments in the tools over the last ten years.
- Particularly in event generation but also in other tools.
- The things that are interesting/important now are very different to those in early Les Houches meetings.

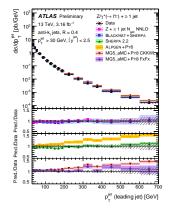
- Lots of developments.
- Mainly aimed at improving simulation of SM processes, after all the most important thing even for BSM.
- However a lot of improvements for BSM physics as well.

Progress: Higher Orders

. . .

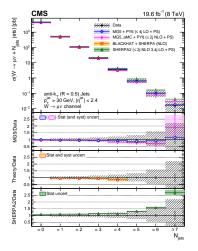
- Focus of event generator development has been the inclusion of additional hard emissions and higher-order corrections.
- Multiple emissions at LO, CKKW (Catani, Krauss, Kuhn and Webber JHEP 0111 (2001) 063) and numerous variants.
- Matching to NLO (NLO normalisation and 1st emission)
 - MC@NLO (Frixione, Webber JHEP 0206 (2002) 029)
 - POWHEG (Nason JHEP 0411 (2004) 040)
 - KrkNLO (S. Jadach, et. al. JHEP 1510 (2015) 052)
- Merging at NLO (NLO normalisation for multiple emissions)
 - MINLO (Hamilton, Nason, (+Zanderighi) JHEP 1006 (2010) 039, JHEP 1210 (2012) 155)
 - FxFx Frederix, Frixione JHEP 1212 (2012) 061
 - Sherpa (Höche, Krauss, Schonherr, Siegert JHEP 1304 (2013) 027)
 - UMEPS(Lönnblad, Prestel JHEP 1303 (2013) 166)
 - Herwig 7.1 (Bellm et.al. arXiv:1705.06700, Plätzer JHEP 1308 (2013) 114) + ...
- 1st processes at NNLO (Hamilton, Nason, Oleari, Zanderighi JHEP 1305 (2013) 082),

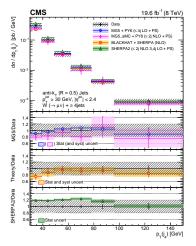

Progress: New Algorithms



- Motivated by matching/merging development of new parton-shower algorithms
 - Improved AO (Gieseke, Stephens, Webber JHEP 0312 (2003) 045)
 - PYTHIA *p*_T (Sjöstrand, Skands, Eur.Phys.J. C39 (2005) 129-154)
 - Catani-Seymour based SHERPA (Schumann, Krauss JHEP 0803 (2008) 038), Herwig (Plätzer, Gieseke JHEP 1101 (2011) 024)
 - Antenna Based (Giele, Kosower, Skands Phys.Rev. D78 (2008) 014026)
 - DIRE (Höche, Prestel Eur.Phys.J. C75 (2015))
 - GenEvA (Bauer, Tackmann, Thaler JHEP 0812 (2008) 010
- These developments have been possible due to improved understanding of QCD, automation of NLO calculations, and faster computers.

ATLAS Z+jets




ATLAS-CONF-2016-046

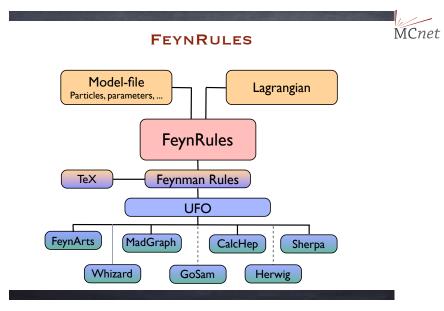
- Introduction

CMS W+jets

CMS PRD 95 (2017) 052002

Peter Richardson

BSM Tools: Theory


BSM Physics

- Historically implementing specific models in PYTHIA/HERWIG/MadGraph.
- Major development FeynRules and other tools which allow the Feynman rules to be computed from the Lagrangian and outputted in the UFO format.
- The major event generators and ME programs can read the UFO and calculate hard processes, decays etc..
- Now extended to NLO.
- Also developments in other tools for spectrum calculations (mainly in SUSY) and decays.
- Are there still models we can't simulate reliably?

- Introduction

stolen from Fabio Maltoni

Peter Richardson

BSM Tools: Theory

Communication and Accords

- Les Houches has had a major impact in agreeing standard and accords for communication between the different tools.
- Are there other things we need to agree?
- Only works with the agreement of the affected parties.

Reinterpretation/Recasting

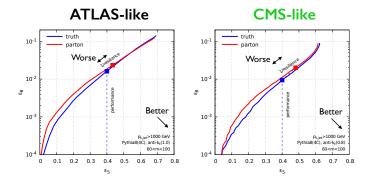
- Now a lot of tools to do this ATOM, Contour, CheckMATE, FastLim, Gambit, ...
- Other tools to analyse events Rivet, MadAnalysis, ...
- Is there work to do here on these tools?
- For the last 2–3 LH there have been efforts for an accord.
- Seems to be more a discord, needs consensus and buy-in by all the effected parties.

Tools Related Issues From Session 1

There are some topics which have a tools element where there's possibility for overlap with the 1st session.

- Jet-Substructure, lot of work in the first session, mainly for QCD (α_S determination) and Higgs. Applications to BSM?
- Application of Quark-Gluon tagging to BSM?
- Higgs template cross sections
- Backgrounds. 1st session mainly interested in measurement of SM processes, but as background also important for BSM and for tools in how we simulate them.

Jet Substructure

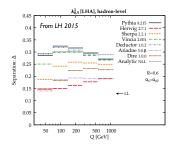


taken from Jesse Thaler's summary of session 1.

- 2-Prong Jet Substructure Resilience
- Extracting the Strong Coupling Constant
- Uses for Quark/Gluon Tagging
- Advanced Observables for Parton Showers

2-prong

ROC Curves parton \Rightarrow particle, $p_T > I$ TeV

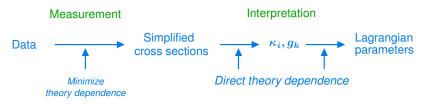


Quark-Gluon tagging

New Opportunities for I-Prong Tagging

Assuming progress on parton shower modeling by LH 2019...

...what physics analyses might benefit from quark/gluon tagging?


E.g.: dark matter mono-tagged-jet plus MET, quark-rich gluino cascade decays, pileup jet mitigation, double subjet tagging in boosted hadronic W/Z, constrain parton showers using LEP data, resolving combinatorics in tt + jet, forward jet tagging in VBF/VBS, constraining PDFs with (N)NLO interplay, disentangle box/triangle graphs in high pr Higgs, initial-state tagging using jet vetoes, ...

[Gras, Hoeche, Kar, Larkoski, Lönnblad, Plätzer, Siódmok, Skands, Soyez, JDT, 1704.03878]

Higgs Template Cross Sections

taken from Kerstin Tackmann's summary of session 1. Introduction: simplified template cross sections.

Goals

- Decouple the measurements and the interpretation
 - $\star\,$ Run1 μ measurements fold theory predictions and uncertainties directly into the measurements
- Minimize the theoretical uncertainties in the measurements
- Allow for interpretation with more/different model assumptions/BSM scenarios than provided by the experiments

Projects for Les Houches

- Are there models/signals which we can't simulate?
- Reinterpretation tools and discussion.
- Simulation of backgrounds and jet structure based signals.
- Long Live Particles.
- EFT/precision approach to new physics searches.
- DM specific issues.

Projects for Les Houches

■ Go home and do QCD.