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Unfolding
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▰ We only have access to observables at 
reconstruction level, i.e after detector effects

▰ When comparing different theories, we want to 
compare observables before detector interaction 
(generator level):
▻ Don’t require theorists to have expert detector 

knowledge to compare their predictions
▻ Easier to maintain and incorporate new 

calibration routines for detector simulation
▰ What I’m not talking about today:

▻ IBU/D’Agostini method
▻ SVD
▻ Matrix inversion
▻ Other methods for unfolding using histograms

Reco level

Generator level

https://www.sciencedirect.com/science/article/pii/016890029500274X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/0168900295014780?via%3Dihub


Unfolding
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Traditional methods for unfolding are performed 
using histograms
▰ Well understood statistical properties
▰ Clear convergence criteria

Limitations:
▰ Histograms need to be defined before 

unfolding. 
▻ If a different binning is required, the full 

unfolding routine needs to be redone
▰ Often able to address only 1 observable at a 

time
▻ Multi-dimensional histograms are 

harder to deal with: curse of 
dimensionality

Reco level Generator level

J. High Energ. Phys. 2019, 149 (2019).



Omnifold*
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ML is used to define a method for unfolding that is 
unbinned and can use multiple distributions at a time
2 step iterative approach
▰ Simulated events after detector interaction are 

reweighted to match the data
▰ Create a “new simulation” by transforming 

weights to a proper function of the generated 
events

Machine learning is used to approximate 2 likelihood 
functions:
▰ reco MC to Data reweighting
▰ Previous and new Gen reweighting

* Andreassen et al. PRL 124, 182001 
(2020)

* Andreassen et al. PRL 124, 
182001 (2020)
For unfolding using invertible 
networks see:

● SciPost Phys. 9 (2020) 
074 e-Print: 2006.06685

https://arxiv.org/abs/2006.06685


Omnifold
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Reco level

Generator level

MC

MCData

Data



Omnifold
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Reco level

Generator level

MC

MCData

Data Step 1:
● Train a classifier to separate data from MC events
● Reweight reco level MC with weights:

W(reco) = 
pData(reco)/pMC(reco) 

Iteration 1



Omnifold
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Reco level

Generator level

MC

MCData

Data Step 2:
● Pull weights from step 1 to generator level events
● Train a classifier to separate initial MC at gen level 

from reweighted MC events
● Define a new simulation with weights that are a 

proper function of gen level kinematics

MC reweighted

W(gen) = pweighted 

MC(gen)/pMC(gen) 

Iteration 1



Omnifold
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Reco level

Generator level

MC

MCData

Data Start again from step 1 using the new simulation after 
pushing the weights from step 2
● Guaranteed convergence  to the maximum 

likelihood estimate of the generator-level 
distribution when number of iterations go to infinite

● In practice, less than 10 iterations are enough to 
achieve convergence

Iteration 1



Omnifold
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Reco level

Generator level

MC

MCData

Data Start again from step 1 using the new simulation after 
pushing the weights from step 2
● Guaranteed convergence  to the maximum 

likelihood estimate of the generator-level 
distribution when number of iterations goes to 
infinite

● In practice, less than 10 iterations are enough to 
achieve convergence

Iteration N



Part 2
Physics case
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Jet angularities
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Use jet observables to study different 
properties of QCD physics:
▰ Infrared and collinear (IRC) safe 

𝛌1
a, a = [0,0.5,1] and unsafe pTD 

angularities
▰ Charge dependent observables: 

Qj and Nc
▰ Study the evolution of the 

observables with energy scale 
Q2 = -q2 

q

● zi: longitudinal momentum fraction
● qi: charge
● Ri distance from jet axis in (eta,phi)



Experimental setup
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Using 228 pb-1  of data collected 
by the H1 Experiment during 
2006 and 2007 at 318 GeV 
center-of-mass energy 

Phase space definition:
▰ 0.2 < y < 0.7
▰ Q2 > 150 GeV2

▰ Jet pT > 10 GeV
▰ -1 < 𝜂lab < 2.5

Jets are clustered with kt 
algorithm with R=1.0

Reconstructed hadrons using 
combined detector 
information: energy flow 
algorithm

27.5 GeV e+-  (k) 920 GeV p (P)

Q2 = - q2

 y = Pq / pk

 P: incoming proton 4-vector
 k: incoming electron 4-vector
 q=k-k’ : 4-momentum transfer



Omnifold*
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2 step iterative approach
▰ Simulated events after detector interaction 

are reweighted to match the data
▰ Create a “new simulation” by transforming 

weights to a proper function of the generated 
events

Machine learning is used to approximate 2 
likelihood functions:
▰ reco MC to Data reweighting
▰ Previous and new Gen reweighting

* Andreassen et al. PRL 124, 182001 
(2020)
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Different input levels for each step
▰ Step 1 particles are used as inputs 
▰ Step 2 uses  the set of observables planned 

to unfold

Gen Jet 
observables

Reco 
Particles 
inside jet

Omnifold

Step 1 Step 2



Extracting particle information
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▰ Particle information is extracted using a Point cloud 
transformer* model

▰ Model takes kinematic properties of particles and use the 
distance between particles in 𝜂-𝜑 to learn the relationship 
between particles

▰ Built in symmetries: permutation invariance
▰ Consider up to 30 particles per jet

* V. Mikuni and F. Canelli 2021 Mach. Learn.: Sci. Technol. 2 035027
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All distributions are simultaneously unfolded. 

Outputs of the unfolding 
methodology are 
weights that are applied 
to the simulation
● Green markers 

represent the 
unfolded results at 
reco level

● Agreement with 
data improves 
compared to 
initial Rapgap 
simulation



Part 3
Unfolded results
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Closure test
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Verify the model 
consistency: start from the 
Rapgap simulation and 
unfold the response based 
on the Djangoh simulation

Total of 6 iterations used 
to derive the main results

All distributions are unfolded simultaneously without binning 
and without jet substructure information used at reco level!



Inclusive 
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Dedicated DIS 
generators do a good 
job everywhere, 
especially Rapgap

Herwig, Pythia,  and 
(yet unreleased update 
to) Sherpa do a decent 
job for most 
distributions



Multi-differential

21

Q2  distribution is 
simultaneously 
unfolded, displaying 
the energy scale 
dependence of the 
observables, 
resulting in more 
than 30 unfolded 
distributions 
provided



Multi-differential
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Mean value of all distributions also unfolded for free

More quark-like 
behaviour at higher 
energies: mean jet 
charge becomes more 
positive

Agreement between 
general purpose 
generators improve at 
higher Q2



Multi-differential
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Worse general 
agreement between 
data and simulations

Standard deviation of all distributions also unfolded for free



Conclusions 
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Conclusions and prospects
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▰ Jet observables are an unique laboratory to study QCD 
properties

▰ Energy scale evolution for each jet observable measured in 
multiple Q2 intervals from 150 to 5000 GeV2

▰ Detector effects are corrected using the Omnifold method 
with particles as inputs using graph neural networks
▻ Unbinned and simultaneous unfolding

▰ Unfolded the means and standard deviations without bin 
artifacts

▰ Good agreement for dedicated DIS generators, worse 
agreement for general purpose simulators

▰ Public results available at: DESY-23-034

https://arxiv.org/abs/2303.13620
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THANKS!
Any questions?



Backup

27



Systematic uncertainties
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Systematic uncertainties currently considered
▰ HFS energy scale: +- 1%
▰ HFS azimuthal angle: +- 20 mrad
▰ Lepton energy: +- 0.5% (mainly affects Q2)
▰ Lepton azimuthal angle: +- 1 mrad (mainly affects Q2)
▰ Model uncertainty: differences in unfolded results between Djangoh and Rapgap
▰ Non-closure uncertainty: Differences between the expected and obtained values of the closure test
▰ QED uncertainty: Use the variation of measured quantities when radiation is turned off in the simulation
▰ Statistical uncertainty: Standard deviation of 100 bootstrap samples with replacement



MC Generators
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Lund string hadronization model and CTEQ6L PDF set
▰ Djangoh: Dipole model from Ariadne
▰ Rapgap: PS from leading log approximation

Pythia 8.3: default NNPDF3.1 PDF
▰ Vincia: pT ordered antenna and NNPDF3.1 PDF
▰ Dire: dipole model, similar to Ariadne and MMHT14nlo68cl PDF

Herwig 7.2: Cluster hadronization and CT14 PDF set
Sherpa 3.0: Cluster hadronization pQCD at NLO accuracy for the 1 & 2 jet
final states and LO for the 3 jet contribution. 


