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“Les Houches is a bi-annual marriage-counselling

retreat between theorists and experimentalists”
—Yacine Haddad




Why Les Houches is special...
... why you will enjoy being stuck in the
mountains among physicists for 10 days...

e Talk to experimentalists ... they won't be able to escape
e Mingle with the competition ... and exchange ideas and pursue common interests

l

Start a project!

Typical scope of projects in SM phenomenology:
Comparative studies
Theory/experiment comparison
Study theoretical & experimental aspects/challenges that needs clarification
Les Houches accords

${your_project}

.....l

— Some sessions planned for the first few days, afterward this is up to you!



Some possible topics are advertised on the twiki

Techniques and calculations for SM phenomenology:

= Calculations/tools:
expected precision for fundamental Standard Model processes at 14 and 100 TeV; what calculations
are needed to match this precision?
NNLO and N3LO; status/challenges/prospects
theory uncertainties; more rigorous estimates? correlations? In particular, theory uncertainty for EW
corrections?
usage of NNLO results; grids seem to be a real bottleneck now for precision work
resummation in analytic and parton shower calculations
= uncertainty for 'softly-vetoed' distributions
= comparisons of jet veto calculations
=« tuned comparison of NLL parton showers; sub-leading power corrections

= PDFs:
= followup on PDF4LHC21 benchmarking exercise; better understanding of tolerances, tensions
= EW corrections/EW PDFs; how to provide consistent calculations (lepton definition with QED effects)
= Electron-ion collider (EIC); what will EIC tell us? how do we prepare for that?
= N3LO PDFS; how firm are changes to the gluon, and what should be done for benchmark Higgs
cross sections; progress on splitting functions
= PDF uncertainties, i.e. hopscotch vs Monte Carlo sampling
= intrinsic charm
= theory uncertainties/correlations in fit. Double counting?
= quark-gluon discrimination for PDF determination

Just a collection of potentially interesting topics.
Feel free to come up with your own!

= Higgs:
= understanding the SM for high Higgs pT; role of top mass corrections/scheme (MSbar vs on-shell);
how to improve channel sensitivities;
= VBF signal at high pT; gluon-fusion background in VBF phase-space
= parton-shower uncertainties in VBF

= EW sector:
= polarisation measurements (for diboson/VBS as well): theory/experiment interplay
= prospects for tri-boson production. Are there any theoretical limitations for run 111?
= W mass:
= (non-perturbative) modeling
= new ideas/methods (asymmetry)
= determination at e+e-
= theory agnostic determination; how agnostic?
= STXS for multiboson processes

= Top:
= ttW tension; multi-jet merging and other modelling aspects (including treatment in experiments)
= merging of off-shell ttW with parton shower
= modelling of ttbb
= tt+X: on-shell vs. off-shell. role of single-top contributions
= tt+gamma: modeling, in particular regarding on-shell/off-shell
= Additional jet activity in top-quark pair production and decay

= Jets:
« flavor tagging of jets; matching what theorists can predict (IR safety) and what experimentalists can
measure [overlap with Jet substructure techniques, see below]
= use heavy flavor jets for W+c (—strange quark PDFs) and Z+c (—intrinsic charm)
= further investigations/understanding of jet R-dependent scale uncertainties

= Miscellaneous
« forward physics — FASER. Anything needed from SM point of view?

= Machine Learning
= Matrix Element calculation using ML
= Interpretable models
= Fast surrogate models for physics simulations
= Workflows and interoperability with experimental software
= Incorporating uncertainties in the training of ML models
= ML-based unfolding techniques
= Enforcing properties to ML models: Lorentz invariance/equivariance, permutation invariance, IRC
safety



Precision at the LHC - Experiment
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Measured cross sections and exclusion limits at 95% C.L.
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See here for all cross section summary plots

Overview of CMS cross section results
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Precision at the LHC - Theory

Les Houches wishlist!

e Up-to-date reference of theory work at fixed order
... convenient to get a grasp of the current state of the art

e Define the next frontier
... useful to get inspired what process to tackle next

e Interface theory—experiment
... communicate the needs from experiments to theorists

Dedicated session - XX:YY on Z2Z77.
— Come to the meeting with a list of
processes you think should computed better!

process known desired
N*LO .
, e N*LOgcp + N“YLOgcnerw
pp—V N“'”LOQCD@EW 2
NLOgw
NLOgw
NLOgcp
sy NNLOgep + NLOgw
pp— VV (gg channel, w/ massive loops)
+NLOgep (gg channel) )
N"LOgepsEw
pp—=V+j NNLOgep + NLOgw hadronic decays
i ) NLO + NLOgw (QCD component)
pp—> V+2j J e NNLOgen
NLOgep + NLOgyw (EW component)
pp— V +bb NLOgen NNLOgep + NLOgy
p—=VV 4+ 15 NLOgep + NLOgw NNLOgcp

= VV' +2j

=W W' 425
= WIW™ 425
oW Z42j5
pp— ZZ + 2j

NLOqep (QCD component)
NLOgep +NLOgw (EW component)

Full NLOgep + NLOgw

NLOgep +NLOgy (EW component)

NLOgep + NLOgyw (EW component)

Full NLOgp + NLOgw

Full NLOgcp + NLOgy

pp— VV'V”

pp— WEWHTW~

NLOgcn
NLOgw (w/o decays)

NLOgcp + NLOgw

NLOgcp + NLOgw

PP — 1Y NNLOgep + NLOgyy N*LOgep
mw—=y+i NNLOgep + NLOgyw N*LOgcen
, NNLOgqcp + NLOgw
Pyt %
+NLOgep (g9 channel)
PP = 1YY NNLOgen NNLOgep + NLOgw

[H USS, Huston, JoneS, Pe”en, 2207021 22] Table 3: Precision wish list: vector boson final states. V = W,Z and V', V" = W, Z, 4. Full

leptonic decays are understood if not stated otherwise.



NLO automation: are we done?

e Frontiers:
o off-shell & high-multiplicity (dedicated private codes):
2—8: ttW @ NLO QCD+EW [Denner, Pelliccioli; 2102.03246],
2—9: ttW+j @ NLO QCD [Bi, Kraus, Reinartz, Worek; 2305.03802]
o mostly on-shell: 2—5/6 (readily available in public codes)
e Non-standard calculations
o Loop induced
m Done: HH, H+j, ZH, AA+j, gg—ZZ (amplitude only)
m Desired: H+2j, H+3j, HH (@ NLO EW) . -
o Polarisation ’
o Matching consistent QCD/QED




The NNLO Timeline

Antenna H+jet Hjj(VBF)
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Current frontiers in higher-order calculations

NNLO in good shape

o 22 largely done wiindependent caics - validation), go0d progress in 2—3
o bottlenecks: performance of subtractions, availability of loop amplitudes

How good are they &
how robust are the
uncertainty estimates on
them?

Transferable to other
processes currently of
reach?

) = approximate what we don’t have: VBF (non-fact.), Wbb (mb#0: massification), ttH (eikonal Higgs), ...

e going beyond “standard” calculations

o adding flavour, adding masses, mixed QCD-EW, identified particles (fragmentation functions)

naive product known to
perform poorly around
resonances/shoulders

High-energy Sudakov
logarithms however
largely factorize!

do/dmy, [fb/GeV]
)
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photon isolation studies
at one order higher?

design observables
sensitive to the
fragmentation
component to extract it?




Current frontiers in higher-order calculations

SCET+NNLOJET pp->W=(=1v) + X VE=1.96Tev

N3LO basically limited to “2—1" type processes so far .

LO 20 NNLO
NLO N3LO

[2205.11426]

e Inclusive predictions a(tot) mature for this class
o ggH(H), bbH, VBF-H(H), DY, VH (DY-iike), ...

e Differential calculations with two approaches
o Projection-to-Born: DIS, H—bb, ggH
o QT subtraction: ggH, DY

e Towards 2—2 and beyond

o Massless 3-loop amplitudes known
o Stable “underlying” NNLO implementation
o A general subtraction scheme? 7

What are good candidates? ]

NNPDF40 nnlo
7-point scale variation
HF = Hp = My,

CDFII fiducial region

do/dm¥* [nb/GeV]
o o o o
s & 3 §
w o w o

Substantial computing cost for qT

How would they scale at N3LO? subtraction. Smarter approaches to

Where do we anticipate bottlenecks? FETENT CRBEVER (5 [Frenel i i

public?




Dissemination of theory results (a very naive fixed-order perspective)

e Lv.0: Compute something and ask experimentalists to cite your work
e Lv.1: Provide predictions for an experimental analysis
e Lv.2: Write a (public) code so experimentalists can do Lv.1 themselves

— All levels are far from trivial (even Lv.0)
— There are levels going beyond 2 of course: e.g. matching to PS, ...
— Even at Lv.1 & 2, there are severe computing/storage bottlenecks to overcome:

e O(100k) CPU core hours for a typical 2—2 NNLO computation

~ grids for pre-defined histograms: APPLgrid, fastNLO, PineAPPL, ...
e “Theory events” for flexible post-processing (huge number)

~ storage & access are key: LHE, nTuples, HighTea, ...



Recent results from two of such approaches:
interpolation grids / event files

NNLO [grid]
V.S.

(® NNLO interpolation grids for jet production at the LHC HILE el s (<o

D. Britzger', A. Gehrmann-De Ridder®*, T. Gehrmann®, E.W.N. Glover',
C. Gwenlan®, A. Huss", J. Pires”®, K. Rabbertz”'", D. Savoiu'’, 4 Extensions for ]

M.R. Sutton'?, J. Stark” fragmentation functions?
(photon, hadron, ...)

storage location,
own server, ...?

(® HighTEA: High energy Theory Event Analyser { requirements, 1

Michat Czakon,” Zahari Kassabov,” Alexander Mitov,“ Rene Poncelet,” Andrei Popescu®

Dedicated session - 09:00 on Th. 15.06:
— Presentation by APPLfast and HighTea




Uncertainties of theory predictions

In the precision era, it is becoming increasingly important to have more robust uncertainty

estimates for theory predictions: gg-lumi, ratio to PDFALHCIS @ m
. . . PDF4LHC21 0.9930 =+ 0.0155 \
e Alternatives to scale variations crig 09914 = 00180 x3
. ) MSHT20 0.9930 =+ 0.0108
(Pade approximants, sequence transformation, scheme variations, Bayesian inference, ...) NNPDFA0 09986 + 0.0058

[from slide by G.Salam—Higgs21]

How to determine/treat theory correlations?
e Potential double-counting in case where PDF fits include TH uncertainties?

In an era of approximate N3LO PDFs: how do we estimate uncertainties from the

incomplete N3LO evolution & missing N3LO predictions in the fits?

ggH using
gg luminosity gg luminosity
VS=13TeV Vs=13TeV MSHT
MSHT20 NNLO (68% c.l) " | =27 NNPDF4.0 NNLO, DIS only (68 c.l-+10) /4
NNPDF4.0 N3LO, DIS only (68 c..+10) y
>

-
>
i
IS

=
[0 MSHT20 N3LO (68% c..)

b
Y

6(PDF-TH) = £1|0® (PDFxi0) - o® (PDFyio)|  ~ 1%

2
o

Ratio to MSHT20 NNLO

§(PDF-TH®) = ‘U ) (PDF,n310) — 0® (PDFNNLO)‘ ~ 5-6%

Dedicated session - XX:YY on ZZZZ:

1
o

\
|

Ratio to NNPDF4.0 NNLO, DIS only
-
o

MSHT _INNPDF e

102 103 10! 1
myx (GeV) myx (GeV)

10




Uncertainties for electroweak corrections

e Uncertainty in QCD predictions to estimate higher orders: scale variation
— simple recipe that appears to work rather well
— not working for EW corrections (would lead to almost zero uncertainty)

e EW corrections beyond NLO EW can be large (and have cancellations)
e Non trivial task as various source of corrections (QED, weak, pure and mixed corrections...)

—> Can we find a (simple?) receipt for this?

— Can we reach a Les Houches accord for this?

Dedicated session - 09:00 on Fr. 16.06




The flavour of jets

Theory: ill-defined/divergent (m,=0)

collinear (NLO)

>go (D

soft (NNLO)
o Eg -0

not IR safe!

* LHC experiments:
naive anti-ky

— Much interest recently:

4

2

pinpoint specific
scattering process

jet

Original solution:
Adjust the jet definition: flavour-kt

[Banfi, Salam, Zanderighi; hep-ph/0601139]

[ ] VH(—>bb) [Gauld, Gehrmann-De Ridder, Glover, Huss, Majer; 1907.05836], [Behring, Bizon,Caola, Melnikov, Rontsch; 2003.08321]

Z+b [Gauld, Gehrmann-De Ridder, Glover, Huss, Majer ; 2005.03016]

Z+C [Gauld, Gehrmann-De Ridder, Glover, Huss, Rodriguez Garcia; 2302.12844]

W+C [Czakon, Mitov, Pellen, Poncelet; 2011.01011, 2212.00467], [Bevilacqua, Garzelli, Kardos, Toth; 2106.11261], [Ferrario Ravasio, Oleari; 2304.13791]
W+bb [Hartanto, Poncelet, Popescu, Zoia; 2205.01687, 2209.03280], [Buonocore, Devoto, Kallweit, Mazzitelli, Rottoli, Savoini; 2212.04954]



Flavour jet algorithms  [Siserewiier
) (®Practical Jet Flavour Through NNLO

(towards a flavour definition for anti-kt jets

(@) Infrared-safe fi d o Simone Caletti’, Andrew J. Larkoski?, Simone Marzani'
nfrared-sate flavoured anti-<7 jets and Daniel Reichelt

(¢) A Fragmentation Approach to Jet Flavor

Michal Czakon,” Alexander Mitov,’ Rene Poncelet”

® A dress of flavour to suit any jet

Simone Caletti,! Andrew J. Larkoski,> Simone Marzani,! and Daniel Reichelt?

Rhorry Gauld!, Alexander Huss?, Giovanni Stagnitto®

&= NNLO (4FS)
@=% NNLO (5FS) flav. anti-kr (a = 0.1) 7
=~ NNLO (5FS) flav. anti-kr (a = 0.2) 1

NNLO
% 107'r [WH; 2003.08321] ST

— Open questions: = 3
e Differences between these algorithms? Bl iR o
e Use in measurements? ] -

(fastjet API for standardised flavour information?)
e Fixed-order vs. PS-matched?
e Massless vs. (approx.) massive?

e Impact from MPI can be sizeable

° (Z+C ) Dedicated session - 09:00 on Wed. 14.06

100 200 300 400
Pr.H(bh) [GeV]




The W-boson mass

e As you might have heard... recent interest in W-mass measurements
— tension in latest CDF measurement; still needs to be understood
— basic assumption for session I: there is a unique W-boson mass in the Universe
e Experimental work is certainly needed I“&m «‘?Tﬁﬂsvp‘:?::maw-- ,,,,,,,,,,,,,,,,,,,
e Theory insights might also help to resolve tensions i ¥
o (non-perturbative) modeling LD o
o new ideas/methods (asymmetry) Jueme [ B e ——
. determination at future lepton colliders mss | o 1
» theory agnostic determination; how agnostic? s Ef:;‘;";, __
80200 80300 E 80400
my, [MeV]

Dedicated session - 16:30 on Tue. 15.06




Gauge-boson pT spectra

Important in MW measurement (W/Z ratio)

So far: Pythia 8 AZ tune

e New resummed calculations at N3LL or approx. N4LL

ATLAS Simulation

E== Pythia 8 AZ

—— DyRes 1.0
— Resbos
— CuTe

s=7 TeV, pp— W +X, pp— Z+X

“analytic resummed predictions
were strongly disfavoured by
the recoil distribution in data”

appear to be in far better agreement with data (how? NNLL —N3LL tiny?)

e NLL-accurate Parton Showers for PT(V); how do they compare?

Herwig, PanScales ... (Alaric, Deductor?)

PTZ also recently used for as extraction (note: O(as*3) is NNLO for this observable)

e How robust are the error estimates?

Treatment of different PDFs? (spread between PDFs > final error?)
e non-perturbative modelling based on
ansatz by Collins Rogers ‘14 (robust error estimates?)

[ATLAS-CONF-2023-015]

. .. . PDF set as(mz)
Reliable TH predictions are crucial & o
. : : . MSHT20 [32]  0.11839
(ongoing resummation comparison in EWWG) NNPDF40 (78]  0.11779
CTI8A[79]  0.11982

HERAPDF20 [63] 0.11890

PP B N
0'80 5 10 15 20 25 30 35 40

ATLAS ATEEC
CMS jets
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ttinclusive

T decays

QQ bound states
PDF fits

e'e’ jets and shapes
Electroweak fit

ATLAS Zp_8TeV

T T T T
-@- Hadron Colliders
ATLAS -@- Category Averages PDG 2022
Preliminary -®- Lattice Average FLAG 2021
-@- World Average PDG 2022
~®- ATLAS Zp_8TeV
. 0.1185 = 0.0021
—e= 0.1170 = 0.0019
T 0.1188 = 0.0016
— 0.1177 = 0.0034
—— 0.1178 = 0.0019
— 0.1181 = 0.0037
—r 0.1162 = 0.0020
— 0.1171 = 0.0031
——&——  0.1208 = 0.0028
1o 0.1184 = 0.0008
—— 0.1179 = 0.0009
| '-1.'- | I0.1183 * 0.00P9
0.115 0.12 0.125 0.13
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Enjoy Les Houches!




