

Uncertainties and ML

Uncertainties, the bedrock of experimental science

{statistical, detector systematic, theory systematic, epistemic,}

How sure am I? How can I reduce my uncertainty?

2

Three pesky uncertainties for inference

Ghosh et al.

Ghosh and Nachman

Epistemic Uncertainties

Calibrate by histogramming observables / Neyman Construction with test statistic

Cranmer et al.

З

Traditionally, we reduce impact of NP by sacrificing something:

- Don't use observable \bullet
- Don't use phase space which is badly modelled by simulation ullet
- Reduce sensitivity some other way ullet

Single bin analysis, insensitive to shape uncertainty Infinite bin analysis, very sensitive to shape uncertainty Background uncertain shape Signal shape

Observable Sensitive to Nuisance Parameters

ML equivalent problem: Domain Adaptation

Source

TARGET

MNIST

MNIST-M

Adversarial decorrelation

Learning to Pivot, Louppe et al.

$$L_{Classifier} = L_{Class}$$

Learning to Pivot,

Similar ideas: Blance et al <u>al., W</u> Kas

To fool the adversary, classifier output should be decorrelated to Z

 $-\lambda \cdot L_{Adversary}$ sification

<u>Louppe et al.</u>
<u>I., Stevens et</u>
<u>/unsch at al.,</u>
<u>Estrade at al.</u>
<u>sieczka at al.</u>

ML-Decorrelation Methods

Learning to Pivot, Louppe et al.

Sacrifice separation power for robustness to NPs

Similar ideas: Blance et al., Stevens et

What if we could do better ?

$n_i | \mu \cdot S_i(\boldsymbol{\theta}) + B_i(\boldsymbol{\theta})) \times \prod \mathcal{G}(\theta_j^0 | \theta_j, \Delta \theta_j)$ $j \in syst$

z = Nuisance ParameterPrior

Intuition: Allow the analysis technique to vary with Z \bullet You always get the best classifier for each value of Z

 $\mathcal{P}(n_i|\mu \cdot S_i(\theta) + B_i(\theta)) \times \prod \mathcal{G}(\theta_j^0|\theta_j, \Delta \theta_j)$

 $j \in syst$

PRD.104.056026: Aishik Ghosh, Benjamin Nachman, and Daniel Whiteson

Opposite of decorrelation: Uncertainty-aware learning

9

Use a more general function

Instead of building an observable for assumed NPs $O(x_i) := O(x_i, \nu_0)$, build a general one $O(x_i, \nu)$

Promote NPs to PIO and scan over all possibilities of μ, ν

More sensitivity !

Narrower \Rightarrow Smaller [statistical + systematic] uncertainty on measurement

Practical for LHC analysis: Parameterise your main nuisance parameter but no need to train on all 100 NPs

Subsequently <u>applied to astrophysics</u> problems

Not at the moment..

Can we do similar things for theory uncertainties ?

ML-decorrelating theory uncertainties

Instruction to ML: "Please shrink Pythia vs Herwig difference"

ML methods don't often generalise the way you would hope

Model will learn to fool you !

Adversary successfully sacrifices separation power in order to reduce difference in performance between scale variations

Cross-check with NLO reveals uncertainty severely underestimated by decorrelation approach

In an typical LHC analysis, a cross-check with higher-order usually unavailable

Case Study 2: Uncertainties from varying unphysical scales at LO

As an experimentalist, I want to If left to our own devi

As an experimentalist, I want to understand theory uncertainties better

If left to our own devices, here's how we'd go...

Up: $\mu_{+} = 2 \ \mu_{0}$ $\mu_{-} = \frac{1}{2} \ \mu_{0}$ Down:

- How accurate are these scale uncertainties?
- Is 1/2 to 2 a good range ?

Study pull distribution

$$t_{scale} = \frac{\sigma_{NLO} - \sigma_{LO}}{\Delta \sigma_{LO \ scale}}$$

Questions

Madgraph paper

The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations

J. Alwall^a, R. Frederix^b, S. Frixione^b, V. Hirschi^c, F. Maltoni^d, O. Mattelaer^d, H.-S. Shao^e, T. Stelzer^f, P. Torrielli^g, M. Zaro^{hi}

Process		Syntax	Cross section (pb)				
Vecto	or boson +jets		$LO \ 13 \ TeV$	NLO 13 TeV			
a.1 a.2 a.3 a.4	$pp ightarrow W^{\pm}$ $pp ightarrow W^{\pm} j$ $pp ightarrow W^{\pm} j j$ $pp ightarrow W^{\pm} j j j$	pp>wpm pp>wpmj pp>wpmjj pp>wpmjjj	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccc} \pm 2.0\% & 1.773 \pm 0.007 \cdot 10^5 & \pm 5.2\% & \pm 1.9\% \\ -1.6\% & -9.4\% & -1.6\% \\ \pm 1.4\% & 2.843 \pm 0.010 \cdot 10^4 & \pm 5.9\% & \pm 1.3\% \\ -1.1\% & -0.7\% & 7.786 \pm 0.030 \cdot 10^3 & \pm 2.4\% & \pm 0.9\% \\ -0.7\% & 2.005 \pm 0.008 \cdot 10^3 & \pm 0.9\% & \pm 0.6\% \\ -0.5\% & 2.005 \pm 0.008 \cdot 10^3 & \pm 0.9\% & \pm 0.5\% \\ \end{array}$			
a.5 a.6 a.7 a.8	$pp \rightarrow Z$ $pp \rightarrow Zj$ $pp \rightarrow Zjj$ $pp \rightarrow Zjjj$	p p > z p p > z j p p > z j j p p > z j j j	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccc} & & & & & & & & & & & & & & & $			
a.9 a.10	$pp \rightarrow \gamma j$ $pp \rightarrow \gamma j j$	p p > a j p p > a j j	$\begin{array}{rrrr} 1.964 \pm 0.001 \cdot 10^{4} & {}^{+ 31.2 \% }_{- 26.0 \% } \\ 7.815 \pm 0.008 \cdot 10^{3} & {}^{+ 32.8 \% }_{- 24.2 \% } \end{array}$	$ \begin{array}{cccc} {}^{+1.7\%}_{-1.8\%} & 5.218 \pm 0.025 \cdot 10^4 & {}^{+24.5\%}_{-21.4\%} {}^{+1.4\%}_{-1.6\%} \\ {}^{+0.9\%}_{-1.2\%} & 1.004 \pm 0.004 \cdot 10^4 & {}^{+5.9\%}_{-10.9\%} {}^{+0.8\%}_{-1.2\%} \end{array} $			

+127 more pp processes from 1405.0301!

(Not a random sampling)

Which of these distributions do you expect?

scale

 $= \frac{\sigma_{NLO} - \sigma_{LO}}{\Delta \sigma_{LO \ scale}}$

Statistical patterns of scale variation uncertainties at LO

Up:	$\mu_{+} = 2 \ \mu_{0}$
Down:	$\mu_{-} = \frac{1}{2} \ \mu_{0}$

Experiments interpolate between up / down variations and fit NPs

Could we have a more physically motivated description of uncertainties ? [Eg. Suggestion at Les Houches 2019]

Then we could meaningfully think of propagating / constraining them..., better account for correlations when combining measurements

A desire to have a more meaningful NPs

A Possible Solution.

$$\sigma = c_0 + \alpha_s(\mu)[c_1 + \alpha_s(\mu) c_2 + \cdots]$$

Identify the actual source of uncertainty

• The unknown higher-order corrections: $\alpha_s(\mu) c_2 + \cdots$

Parametrize and vary the unknown

ank Tackmann (DE

- We often know quite a lot about the general structure of c_2
 - \blacktriangleright μ dependence, color structure, partonic channels, kinematic str
- Suitably parametrize the missing pieces
 - Simplest case: c₂ is just a number
 - ► More generally, have to parametrize an unknown function
- Common/independent pieces between different predictions de correlations between them

an Forman Bartington (States and States and States)
ructure,
etermine the
2019-06-14 7 / 17

- ML more sensitive to simulation artefacts → building better uncertainty propagation tools
- If we have meaningful theory NPs, we could do more: constrain these terms, better quantify impact on measurements
- Opens the door to ML as interpretability tools to understand constrains

Neyman Construction

Hypothesis tests using arbitrary test statistic

 $H_0: \mu = \mu_1$ $P(t \in \boldsymbol{\omega} \,|\, H_0) = \alpha$

We can find the correct cuts by throwing toys

 μ_1

 $p(t \mid \mu_1) \rightarrow$

Neyman Construction

Notice t_{μ} can be different for each μ

Neyman Construction

Constructing the test statistic with neural networks

Brehmer et al

Bypass the need for histograms & likelihood model based on Poisson distributions

Even if the LR is only approximate, Neyman Construction treats it as "just another test statistic" and finds you the correct confidence intervals

Pheno study to recover sensitivity lost due to quantum interference

(e) $\mu = 4$, without rate

Pheno study: Madgraph+Pythia+Delphes **VBF** samples

Expected sensitivity at $\mu = 1$

` '

Physics Data: HiggsML + Tau Energy Scale (TES) Uncertainty

Physics Data: HiggsML + Tau Energy Scale (TES) Uncertainty

Uncertainty-Aware coincides with classifier trained on true Z \Rightarrow Can't get much better than that!

Test performance for "observed" data at nominal and above nominal Z

In every case the Aware Classifier is as good as the optimal one, no other technique matches its performance everywhere

31

- ML researchers assume i.i.d
- This technique exploits correlations between samples a different paradigm
- Interesting applications outside of physics

For my handwriting this is '2', for yours it might be 'a' ARM: Adapt to the individual + classify

Case Study 1: Two-point uncertainty (fragmentation modelling)

Goal: W jets vs QCD jets Decorrelation: Reduce difference in performance on Herwig vs Pythia Cross-check: Test uncertainty estimate from {Herwig vs Pythia} using Sherpa

Adversary successfully <u>sacrifices separation</u> <u>power</u> in order to reduce difference in performance between <u>Herwig</u> and Pythia

Cross-check with Sherpa reveals <u>uncertainty</u> <u>severely underestimated</u> by usual <u>Herwig</u> vs Pythia comparison

In an typical LHC analysis, a cross-check with third generator rarely performed, similar to prior work suggesting decorrelation for theory uncertainties

- We can't calculate QFT to infinite order
- Artefact of truncation of series: Varying certain unphysical scales changes predictions
- Uncertainty quantification: Vary scales (renormalization scale, factorisation scale) between 1/2 to 2 in MC, see change in prediction

Scale uncertainty – Problem Setup

Goal: Single top vs W+Jets Decorrelation: Reduce difference in performance on scale variations at LO Cross-check: Test uncertainty estimate from {scale variations at LO} using NLO

36

Overconstraining NP

Our modelling of NPs might be over-simplified

If you assume one NP – chances are that your physics Likelihood will exploit this oversimplified JES model to overconstrain JES for high p_T jets!

From <u>W. Verkerke</u>:

Nuisance Parameter Infrastructure

From Daniel Whiteson Inspired by <u>XKCD</u>

Process								
р	р	>	wp	m				
р	р	>	wp	m	j			
р	р	>	wp	m	j	j		
р	р	>	wp	m	j	j	j	
р	р	>	z					
р	р	>	z	j				
р	р	>	z	j	j			
р	р	>	z	j	j	j		
р	р	>	a	j				
р	р	>	a	j	j			
р	р	>	w+	- T	7-	w	om	
р	р	>	z	w٩	- 1	J –		
р	р	>	z	Z	wŗ	om		
р	р	>	z	Z	Z			
р	р	>	a	w٩	- 1	J –		
р	р	>	a	a	wŗ	om		
р	р	>	a	Z	wŗ	om		
р	р	>	a	Z	Z			

$n_{\rm part}$	$\Delta\sigma/\sigma_0$	$rac{\sigma_{ m NLO}-\sigma_0}{\Delta\sigma}$
1	1.54×10^{-1}	1.84
2	1.97×10^{-1}	1.96
3	2.45×10^{-1}	0.59
4	4.10×10^{-1}	0.25
1	1.46×10^{-1}	1.87
2	1.93×10^{-1}	1.82
3	2.43×10^{-1}	0.56
4	4.08×10^{-1}	0.27
2	3.12×10^{-1}	5.33
3	3.28×10^{-1}	0.85
3	1.00×10^{-3}	610.69
3	8.00×10^{-3}	92.39
3	1.00×10^{-2}	85.00
3	1.00×10^{-3}	302.75
3	1.90×10^{-2}	42.33
3	4.40×10^{-2}	47.24
3	1.00×10^{-3}	1244.49
3	2.00×10^{-2}	17.24

Make correction in UQ for IEW processes

Process	$n_{ m part}$	$\Delta\sigma/\sigma_0$	$rac{\sigma_{ m NLO}-\sigma_0}{\Delta\sigma}$	$\Delta\sigma_{ m ref}/\sigma_{ m 0}$	$rac{\sigma_{ m NLO}-\sigma_0}{\Delta\sigma_{ m ref}}$
p p > wpm	1	1.54×10^{-1}	1.84	1.47×10^{-1}	1.92
pp>wpmj	2	1.97×10^{-1}	1.96	2.94×10^{-1}	1.31
pp>wpmjj	3	$2.45 imes 10^{-1}$	0.59	4.41×10^{-1}	0.33
pp>wpmjjj	4	4.10×10^{-1}	0.25	5.88×10^{-1}	0.18
p	1	1.46×10^{-1}	1.87	1.47×10^{-1}	1.86
pp>zj	2	1.93×10^{-1}	1.82	2.94×10^{-1}	1.19
pp>zjj	3	2.43×10^{-1}	0.56	4.41×10^{-1}	0.31
pp>zjjj	4	4.08×10^{-1}	0.27	5.88×10^{-1}	0.19
pp>aj	2	$3.12 imes 10^{-1}$	5.33	2.94×10^{-1}	5.66
рр>ајј	3	3.28×10^{-1}	0.85	4.41×10^{-1}	0.63
p p > w+ w- wpm	3	1.00×10^{-3}	610.69	4.41×10^{-1}	1.39
p p > z w+ w-	3	8.00×10^{-3}	92.39	4.41×10^{-1}	1.68
p p > z z wpm	3	1.00×10^{-2}	85.00	4.41×10^{-1}	1.93
p p > z z z	3	1.00×10^{-3}	302.75	4.41×10^{-1}	0.69
p p > a w+ w-	3	1.90×10^{-2}	42.33	4.41×10^{-1}	1.82
pp>aawpm	3	4.40×10^{-2}	47.24	4.41×10^{-1}	4.72
p p > a z wpm	3	1.00×10^{-3}	1244.49	4.41×10^{-1}	2.82
pp>azz	3	2.00×10^{-2}	17.24	4.41×10^{-1}	0.78

Process	$n_{ m part} = \Delta \sigma / \sigma_0 \left. rac{\sigma_{ m NLO} - \sigma_0}{\Delta \sigma} ight = \Delta \sigma_{ m ref} / \sigma_0 \left. rac{\sigma_{ m NLO} - \sigma_0}{\Delta \sigma_{ m ref}} ight $
p p > h	1 3.48×10^{-1} $3.02 1.47 \times 10^{-1}$ 7.15

Large corrections loop-induced 2->1 process

Surviving tails

$$\frac{\Delta \sigma}{\Delta \sigma} \frac{\sigma_{\rm NLO} - \sigma_0}{\Delta \sigma} \left| \frac{\Delta \sigma_{\rm ref}}{\Delta \sigma_{\rm ref}} \sigma_0 \frac{\sigma_{\rm NLO} - \sigma_0}{\Delta \sigma_{\rm ref}} \right|$$

$$\times 10^{-1} \quad 3.02 \left| 1.47 \times 10^{-1} \right| 7.15$$

An application in astrophysics

JCAP.020P.0922: Delaney Farrell, Pierre Baldi, Jordan Ott, Aishik Ghosh, Andrew W. Steiner, Atharva Kavitkar, Lee Lindblom, Daniel Whiteson, Fridolin Weber

Learn forward process to access the likelihood

Deploy with ONNX Runtime to compute likelihoods on-the-fly

arXiv:2305.07442: Delaney Farrell, Pierre Baldi, Jordan Ott, Aishik Ghosh, Andrew W. Steiner, Atharva Kavitkar, Lee Lindblom, Daniel Whiteson, Fridolin Weber

arXiv:2305.07442: Delaney Farrell, Pierre Baldi, Jordan Ott, Aishik Ghosh, Andrew W. Steiner, Atharva Kavitkar, Lee Lindblom, Daniel Whiteson, Fridolin Weber

Forward process step-by-step

New ML tools

Mapping machine-learned physics into a human-readable space

Guided

Search

Signal/Background Pairs

]	Rank	EFP	κ	β	Chrom #	$ADO[EFP, CNN]_{X_6}$	AUC[EFP]	$ADO[6HL + EFP, CNN]_{X_{all}}$	AUC[6HL +
_	1	\leftrightarrow	2	$\frac{1}{2}$	3	0.6207	0.8031	0.9714	0.9528 ± 0
	2		2	$\frac{1}{2}$	3	0.6205	0.8203	0.9714	0.9524
	3	•	0	_	1	0.6205	0.6737	0.9715	0.9525
	4		2	$\frac{1}{2}$	3	0.6199	0.8301	0.9715	0.9527
	5		2	$\frac{1}{2}$	3	0.6197	0.8290	0.9714	0.9527
	6		2	$\frac{1}{2}$	3	0.6196	0.8251	0.9715	0.9522
	7	•	0	$\frac{1}{2}$	2	0.6187	0.7511	0.9715	0.9526
	8	\Rightarrow	2	$\frac{1}{2}$	3	0.6184	0.8257	0.9712	0.9527
	9	\Rightarrow	2	$\frac{1}{2}$	3	0.6182	0.8090	0.9714	0.9527
	10		2	$\frac{1}{2}$	3	0.6180	0.8314	0.9714	0.9526
_	60	•	0	1	2	0.6163	0.7194	0.9715	0.952
	341	\diamondsuit	-1	$\frac{1}{2}$	4	0.6142	0.6286	0.9714	0.9509
	589	•	0	2	2	0.6109	0.7579	0.9714	0.9523
:	3106	•	-1	_	1	0.5891	0.5882	0.9714	0.9510
	3519	\Rightarrow	$\frac{1}{2}$	$\frac{1}{2}$	2	0.5664	0.7698	0.9715	0.9524
	3521	•	$\frac{1}{2}$	_	1	0.5663	0.7093	0.9714	0.9522
	5531	\Rightarrow	1	2	1	0.5290	0.7454	0.9714	0.9507
	5554	•	1	$\frac{1}{2}$	2	0.5279	0.8210	0.9713	0.9508
	5610	•	2	_	1	0.5245	0.7117	0.9714	0.9507
	5657		1	1	3	0.5224	0.8257	0.9712	0.9506
	5793	•	1	1	2	0.5191	0.8640	0.9714	0.9508
	6052		1	2	3	0.5153	0.8500	0.9716	0.9504
	7438	•	1	2	2	0.5011	0.8835	0.9716	0.9506

+ EFP]

- 0.0003

Differentiable Programming: Optimise your final objective directly

<u>Simpson et al.</u>

Figure 1. The pipeline for neos. The dashed line indicating the backward pass involves updating the weights φ of the neural network via gradient descent.

Following Inferno [de Castro et al.]

