
Uncertainties and ML

Aishik Ghosh
Les Houches
20 June 2023

2

Uncertainties, the bedrock of experimental science

mH = 125.25 ± 0.17 GeV

How sure am I ? How can I reduce my uncertainty ?

{statistical, detector systematic, theory systematic, epistemic, ….}

3

Three pesky uncertainties for inference

Experimental Systematics Theory Systematics Epistemic Uncertainties

3

output a score (see e.g. [50]),

s(x) =
p(x|z = z0, S)

p(x|z = z0, S) + p(x|z = z0, B)
, (1)

where

p(·) denotes a probability density, S represents the sig-
nal class and B represents the background class. The
score of the network is used as an observable with high
sensitivity to the parameter of interest for the final mea-
surement.

C. Data Augmentation

An alternative method is to augment the training data
to include signal and background samples with several
values of the nuisance parameters. A network trained
optimally to minimise a BCE loss learns the score,

s(x) =
hp(x|Z, S)ipZ

hp(x|Z, S)ipZ + hp(x|Z,B)ipZ

, (2)

where pZ is the probability density over the nuisance pa-
rameter Z, treated as a random variable with some prob-
ability density chosen by the experimenter. Typically, Z
is discrete and has a nonzero probability mass at only a
few values. The score s(x) is then treated in the same
way as in the baseline case (Eq. 1).

D. Adversarial Training

An orthogonal strategy is to train a classifier with the
explicit objective of being insensitive to the e↵ects of the
nuisance parameter. Our implementation follows the ad-
versarial training prescription of Ref. [12]. However, to
improve the training stability and speed, the classifier
and adversary are concatenated together through a gra-
dient reversal layer [51] and trained simultaneously. The
classifier is trained with the objective to minimize the
classification loss and maximise the adversarial loss and
the second loss has a relative weight of �, a tunable hyper-
parameter.

While training for exact invariance in this adversarial
setup can be tricky [52], maximizing overall sensitivity
requires a compromise between the level of invariance to
nuisance parameters and the classification power. The
Gaussian case described in Sec. IV is an extreme exam-
ple where exact invariance to the nuisance parameter re-
quires zero discriminating power for the classifier.

In the end, the score of the classifier on observed data
is used as an observable in the final measurement, in the
same way as for the baseline classifier.

E. Uncertainty-Aware Classifier

The concept explored in this paper is to parameter-
ize the network in the nuisance parameters; see Fig. 1.
Specifically, the network is trained with the true value
of the nuisance parameter z as an input to the network
in additional to the observables x. A network trained
optimally to minimise a BCE loss learns the score,

s(x, z) =
p(x|Z = z, S)

p(x|Z = z, S) + p(x|Z = z,B)
. (3)

The score of this classifier is not used as a single ob-
servable for the final fit as in the previous methods. At
evaluation time, while the x values remain fixed as inputs
to the network, the unknown z is left as a parameter, al-
lowing for later profiling over the nuisance parameters in
the final measurement.

Importantly, note that Eq. 3 depends on z. This means
that the calculation of analysis observable(s) depends on
z and change as the nuisance parameter is varied, during
the evaluation of uncertainties and/or during nuisance
parameter profiling. This is in contrast to the standard
search paradigm in which the calculation of the analysis
observables are fixed and the sensitivity to z is evaluated
post-hoc. Allowing the calculation of the analysis ob-
servables to depend explicitly on the value of z is not the
traditional approach, but it does not require that the ex-
perimenter have any special knowledge of z. Formation
of a confidence interval in the space of model parameters
(either parameters of interest or nuisance parameters)
naturally requires calculating the likelihood ratio of the
model as those parameters vary, relative to the best-fit
parameters. It is natural for the calculation of the anal-
ysis observable, a proxy for the likelihood ratio, to vary
with those parameters. One can later profile over the
nuisance parameters to capture the impact of our lack of
knowledge of its true value. The traditional approach of
fixing the analysis observable calculation can be thought
of as an ad-hoc approximation of the full method.

.	.
	.

3

z

x1
x2

f(x1, x2, . . . , z)

.	.
	.

.	.
	.

FIG. 1: The architecture of an uncertainty-aware
network, in which the nuisance parameter z is treated
as a feature alongside the observed data x, learning a

decision function which varies with the nuisance
parameter.

Propagate and profile

Calibrate by histogramming
observables

/
 Neyman Construction with

test statistic

t→

μ→

???

Ghosh and NachmanGhosh et al. Cranmer et al.

https://doi.org/10.1103/PhysRevD.104.056026
https://arxiv.org/abs/1506.02169
https://link.springer.com/article/10.1140/epjc/s10052-022-10012-w

Observable Sensitive to Nuisance Parameters

Single bin analysis, insensitive to shape uncertainty

Signal shape

Background uncertain shape

Infinite bin analysis, very sensitive to shape uncertainty

Traditionally, we reduce impact of NP by sacrificing something:

• Don’t use observable

• Don’t use phase space which is badly modelled by simulation

• Reduce sensitivity some other way

ML equivalent problem: Domain Adaptation

Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand and Lempitsky

MNIST Syn Numbers SVHN Syn Signs

Source

Target

MNIST-M SVHN MNIST GTSRB

Figure 6: Examples of domain pairs used in the experiments. See Section 5.2.4 for details.

Method
Source MNIST Syn Numbers SVHN Syn Signs

Target MNIST-M SVHN MNIST GTSRB

Source only .5225 .8674 .5490 .7900

SA (Fernando et al., 2013) .5690 (4.1%) .8644 (�5.5%) .5932 (9.9%) .8165 (12.7%)

DANN .7666 (52.9%) .9109 (79.7%) .7385 (42.6%) .8865 (46.4%)

Train on target .9596 .9220 .9942 .9980

Table 2: Classification accuracies for digit image classifications for di↵erent source and
target domains. MNIST-M corresponds to di↵erence-blended digits over non-
uniform background. The first row corresponds to the lower performance bound
(i.e., if no adaptation is performed). The last row corresponds to training on
the target domain data with known class labels (upper bound on the DA perfor-
mance). For each of the two DA methods (ours and Fernando et al., 2013) we
show how much of the gap between the lower and the upper bounds was covered
(in brackets). For all five cases, our approach outperforms Fernando et al. (2013)
considerably, and covers a big portion of the gap.

Method
Source Amazon DSLR Webcam

Target Webcam Webcam DSLR

GFK(PLS, PCA) (Gong et al., 2012) .197 .497 .6631

SA* (Fernando et al., 2013) .450 .648 .699

DLID (Chopra et al., 2013) .519 .782 .899

DDC (Tzeng et al., 2014) .618 .950 .985

DAN (Long and Wang, 2015) .685 .960 .990

Source only .642 .961 .978

DANN .730 .964 .992

Table 3: Accuracy evaluation of di↵erent DA approaches on the standard Office (Saenko
et al., 2010) data set. All methods (except SA) are evaluated in the “fully-
transductive” protocol (some results are reproduced from Long and Wang, 2015).
Our method (last row) outperforms competitors setting the new state-of-the-art.

24

arXiv:1505.07818

https://arxiv.org/abs/1505.07818

Adversarial decorrelation

Classifier f

X

✓f

f(X; ✓f)

Lf (✓f)

...

Adversary r

�1(f(X; ✓f); ✓r)

�2(f(X; ✓f); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f))

P(�1, �2, . . .)

Lr(✓f , ✓r)

Figure 1: Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The
adversary r models the distribution p(z|f(X; ✓f) = s) of the nuisance parameters as observed only through
the output f(X; ✓f) of the classifier. By maximizing the antagonistic objective Lr(✓f , ✓r), the classifier f
forces p(z|f(X; ✓f) = s) towards the prior p(z), which happens when f(X; ✓f) is independent of the nuisance
parameter Z and therefore pivotal.

type of the nuisance parameter (discrete or continuous) or of its prior. Finally, we demonstrate the
effectiveness of the approach with a toy example and examples from particle physics.

2 Problem statement

We begin with a family of data generation processes p(X,Y, Z), where X 2 X are the data, Y 2 Y
are the target labels, and Z 2 Z are the nuisance parameters that can be continuous or categorical. Let
us assume that prior to incorporating the effect of uncertainty in Z, our goal is to learn a regression
function f : X ! S with parameters ✓f (e.g., a neural network-based probabilistic classifier) that
minimizes a loss Lf (✓f) (e.g., the cross-entropy). In classification, values s 2 S = R|Y| correspond
to the classifier scores used for mapping hard predictions y 2 Y , while S = Y for regression.

We augment our initial objective so that inference based on f(X; ✓f) will be robust to the value
z 2 Z of the nuisance parameter Z – which remains unknown at test time. A formal way of enforcing
robustness is to require that the distribution of f(X; ✓f) conditional on Z (and possibly Y) be
invariant with the nuisance parameter Z. Thus, we wish to find a function f such that

p(f(X; ✓f) = s|z) = p(f(X; ✓f) = s|z0) (1)

for all z, z0 2 Z and all values s 2 S of f(X; ✓f). In words, we are looking for a predictive function
f which is a pivotal quantity with respect to the nuisance parameters. This implies that f(X; ✓f) and
Z are independent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is imposed with respect to p(X|Z) where Y is
marginalized out. In some situations however (see e.g., Sec. 5.2), class conditional independence of
f(X; ✓f) on the nuisance Z is preferred, which can then be stated as requiring

p(f(X; ✓f) = s|z, y) = p(f(X; ✓f) = s|z0, y) (2)

for one or several specified values y 2 Y .

3 Method

Joint training of adversarial networks was first proposed by (Goodfellow et al., 2014) as a way to
build a generative model capable of producing samples from random noise z. More specifically, the
authors pit a generative model g : Rn ! Rp against an adversarial classifier d : Rp ! [0, 1] whose
antagonistic objective is to recognize real data X from generated data g(Z). Both models g and d are
trained simultaneously, in such a way that g learns to produce samples that are difficult to identify by
d, while d incrementally adapts to changes in g. At the equilibrium, g models a distribution whose
samples can be identified by d only by chance. That is, assuming enough capacity in d and g, the
distribution of g(Z) eventually converges towards the real distribution of X .

2

6

LClassifier = LClassification − λ ⋅ LAdversary

To fool the adversary, classifier output
should be decorrelated to Z

Learning to Pivot, Louppe et al.

Similar ideas: Blance et al., Stevens et
al., Wunsch at al.,

Estrade at al.
Kasieczka at al.

S vs B Regress NP

NN
output

Learning to Pivot, Louppe et al.

https://arxiv.org/pdf/1611.01046.pdf
https://arxiv.org/pdf/1905.10384.pdf
https://arxiv.org/abs/1305.7248
https://arxiv.org/abs/1305.7248
https://arxiv.org/pdf/1907.11674.pdf
https://www.epj-conferences.org/articles/epjconf/abs/2019/19/epjconf_chep2018_06024/epjconf_chep2018_06024.html
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.122001
https://arxiv.org/pdf/1611.01046.pdf

7

ML-Decorrelation Methods

Figure 2: Toy example. (Left) Conditional probability densities of the decision scores at Z = ��, 0,� without
adversarial training. The resulting densities are dependent on the continuous parameter Z, indicating that f is
not pivotal. (Middle left) The associated decision surface, highlighting the fact that samples are easier to classify
for values of Z above �, hence explaining the dependency. (Middle right) Conditional probability densities of
the decision scores at Z = ��, 0,� when f is built with adversarial training. The resulting densities are now
almost identical to each other, indicating only a small dependency on Z. (Right) The associated decision surface,
illustrating how adversarial training bends the decision function vertically to erase the dependency on Z.

where � � 0 is a hyper-parameter controlling the trade-off between the performance of f and its
independence with respect to the nuisance parameter. Setting � to a large value will preferably
enforces f to be pivotal while setting � close to 0 will rather constraint f to be optimal. When the
lower bound is strict, let us note however that there may exist distinct but equally good solutions ✓f , ✓r
minimizing Eqn. 11. In this zero-sum game, an increase in accuracy would exactly be compensated
by a decrease in pivotality and vice-versa. How to best navigate this Pareto frontier to maximize a
higher-level objective remains a question open for future works.

Interestingly, let us finally emphasize that our results hold using only the (1D) output s of f(·; ✓f) as
input to the adversary. We could similarly enforce an intermediate representation of the data to be
pivotal, e.g. as in (Ganin and Lempitsky, 2014), but this is not necessary.

5 Experiments

In this section, we empirically demonstrate the effectiveness of the approach with a toy example
and examples from particle physics. Notably, there are no other other approaches to compare to in
the case of continuous nuisance parameters, as further explained in Sec. 6. In the case of binary
parameters, we do not expect results to be much different from previous works.

5.1 A toy example with a continous nuisance parameter

As a guiding toy example, let us consider the binary classification of 2D data drawn from multivariate
gaussians with equal priors, such that

x ⇠ N
✓
(0, 0),

1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x|Z = z ⇠ N
✓
(1, 1 + z),

1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z here represents our uncertainty about the location of the mean
of the second gaussian. Our goal is to build a classifier f(·; ✓f) for predicting Y given X , but such
that the probability distribution of f(X; ✓f) is invariant with respect to the nuisance parameter Z.

Assuming a gaussian prior z ⇠ N (0, 1), we generate data {xi, yi, zi}Ni=1, from which we train a
neural network f minimizing Lf (✓f) without considering its adversary r. The network architecture
comprises 2 dense hidden layers of 20 nodes respectively with tanh and ReLU activations, followed
by a dense output layer with a single node with a sigmoid activation. As shown in Fig. 2, the resulting
classifier is not pivotal, as the conditional probability densities of its decision scores f(X; ✓f) show
large discrepancies between values z of the nuisance parameters. While not shown here, a classifier
trained only from data generated at the nominal value Z = 0 would also not be pivotal.

5

Figure 2: Toy example. (Left) Conditional probability densities of the decision scores at Z = ��, 0,� without
adversarial training. The resulting densities are dependent on the continuous parameter Z, indicating that f is
not pivotal. (Middle left) The associated decision surface, highlighting the fact that samples are easier to classify
for values of Z above �, hence explaining the dependency. (Middle right) Conditional probability densities of
the decision scores at Z = ��, 0,� when f is built with adversarial training. The resulting densities are now
almost identical to each other, indicating only a small dependency on Z. (Right) The associated decision surface,
illustrating how adversarial training bends the decision function vertically to erase the dependency on Z.

where � � 0 is a hyper-parameter controlling the trade-off between the performance of f and its
independence with respect to the nuisance parameter. Setting � to a large value will preferably
enforces f to be pivotal while setting � close to 0 will rather constraint f to be optimal. When the
lower bound is strict, let us note however that there may exist distinct but equally good solutions ✓f , ✓r
minimizing Eqn. 11. In this zero-sum game, an increase in accuracy would exactly be compensated
by a decrease in pivotality and vice-versa. How to best navigate this Pareto frontier to maximize a
higher-level objective remains a question open for future works.

Interestingly, let us finally emphasize that our results hold using only the (1D) output s of f(·; ✓f) as
input to the adversary. We could similarly enforce an intermediate representation of the data to be
pivotal, e.g. as in (Ganin and Lempitsky, 2014), but this is not necessary.

5 Experiments

In this section, we empirically demonstrate the effectiveness of the approach with a toy example
and examples from particle physics. Notably, there are no other other approaches to compare to in
the case of continuous nuisance parameters, as further explained in Sec. 6. In the case of binary
parameters, we do not expect results to be much different from previous works.

5.1 A toy example with a continous nuisance parameter

As a guiding toy example, let us consider the binary classification of 2D data drawn from multivariate
gaussians with equal priors, such that

x ⇠ N
✓
(0, 0),

1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x|Z = z ⇠ N
✓
(1, 1 + z),

1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z here represents our uncertainty about the location of the mean
of the second gaussian. Our goal is to build a classifier f(·; ✓f) for predicting Y given X , but such
that the probability distribution of f(X; ✓f) is invariant with respect to the nuisance parameter Z.

Assuming a gaussian prior z ⇠ N (0, 1), we generate data {xi, yi, zi}Ni=1, from which we train a
neural network f minimizing Lf (✓f) without considering its adversary r. The network architecture
comprises 2 dense hidden layers of 20 nodes respectively with tanh and ReLU activations, followed
by a dense output layer with a single node with a sigmoid activation. As shown in Fig. 2, the resulting
classifier is not pivotal, as the conditional probability densities of its decision scores f(X; ✓f) show
large discrepancies between values z of the nuisance parameters. While not shown here, a classifier
trained only from data generated at the nominal value Z = 0 would also not be pivotal.

5

Classifier output for various
values of Z

Adversarial Decorrelation

Similar ideas: Blance et al., Stevens et
al., Wunsch at al.,

Estrade at al.
Kasieczka at al.

Learning to Pivot, Louppe et al.

Sacrifice separation power for robustness to NPs

https://arxiv.org/pdf/1905.10384.pdf
https://arxiv.org/abs/1305.7248
https://arxiv.org/abs/1305.7248
https://arxiv.org/pdf/1907.11674.pdf
https://www.epj-conferences.org/articles/epjconf/abs/2019/19/epjconf_chep2018_06024/epjconf_chep2018_06024.html
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.122001
https://arxiv.org/pdf/1611.01046.pdf

8

What if we could do better ?

7KH�3URILOH�/LNHOLKRRG�DSSURDFK

�

Ɣ 7KH�SURILOH�OLNHOLKRRG�LV�D�ZD\�WR�LQFOXGH�V\VWHPDWLF�XQFHUWDLQWLHV�LQ�WKH�OLNHOLKRRG
ż V\VWHPDWLFV�LQFOXGHG�DV��FRQVWUDLQHG��QXLVDQFH�SDUDPHWHUV
ż WKH�LGHD�EHKLQG�LV�WKDW�V\VWHPDWLF�XQFHUWDLQWLHV�RQ�WKH�PHDVXUHPHQW�RI�w�FRPH�IURP�

LPSHUIHFW�NQRZOHGJH�RI�SDUDPHWHUV�RI�WKH�PRGHO��6�DQG�%�SUHGLFWLRQ�
Ŷ VWLOO�VRPH�NQRZOHGJH�LV�LPSOLHG���ƅ� �ƅ��s�Ţƅ�

ż H[WHUQDO���D�SULRUL�NQRZOHGJH�LQWHUSUHWHG�DV��DX[LOLDU\�VXEVLGLDU\�PHDVXUHPHQW���
LPSOHPHQWHG�DV�FRQVWUDLQW�SHQDOW\�WHUP��L�H��SUREDELOLW\�GHQVLW\�IXQFWLRQ
�XVXDOO\�*DXVVLDQ��LQWHUSUHWLQJ��sŢƅ��DV�*DXVVLDQ�VWDQGDUG�GHYLDWLRQ�

� XVXDOO\�ș� ��DQG�ǻș ���FRQYHQWLRQ�
� GHILQH�HIIHFW�RI�V\VWHPDWLF�M�RQ�SUHGLFWLRQ�[�LQ�ELQ�L�DW������DQG������
� WKHQ�LQWHUSRODWH�	�H[WUDSRODWH�IRU�DQ\�YDOXH�RI�ș� Prior

 = Nuisance Parameterz

4

III. EVALUATION METHODOLOGY

To evaluate the power of each approach above, we ap-
ply them to a common use case, fitting a signal hypothe-
sis in the presence of background, where both signal and
background depend on nuisance parameters. Relevant to
many measurements of Standard Model (SM) processes
as well as searches for physics beyond the SM, the param-
eter of interest is the signal strength µ, the cross section of
the signal relative to the reference value. In the Gaussian
example below, we use low-dimensional datasets for sim-
pler visualization, but the results generalize. Similarly,
for ease of calculations we perform a binned likelihood fit,
although the unbinned nature of neural networks should
allow application to unbinned cases; we leave that inves-
tigation to future work.

For each of the strategies described, template his-
tograms of the classifier score are constructed from sim-
ulated signal and background events for several values of
the nuisance parameter z. These templates are the basis
of the binned likelihood calculation L(µ, z|{xi}) over the
parameters µ, z, where {xi} is the full observed dataset.
The likelihood is a product of a Poisson term for each
histogram bin and a Gaussian constraint on the nuisance
parameter. The Gaussian constraint can readily be re-
placed with any other prior or a Poisson term from an
auxiliary measurement if z is directly constrained with
control region data (demonstrated in Appendix B). If no
additional prior or constraint on the nuisance parameter
is used then only information from the primary measure-
ment constrains z. The Negative Log-Likelihood (NLL)
is (up to an irrelevant constant),

� logL(µ, z|{xi})

= �
nbinsX

j=1

Nj · log (µsj + bj) � µsj � bj � log(�(Ni))

�

+

✓
z � z0p
2�z

◆2

, (4)

where sj , bj are the expected number of signal and back-
ground events in bin j, respectively, and Nj is the num-
ber of events observed in data for that bin. The � func-
tion is the generalized factorial function which can handle
decimal values in the simulated test dataset. Although
usually irrelevant, the log(�(Ni)) term is not a constant
while using an uncertainty-aware network and cannot be
ignored. For this approach, the decision function changes
with z and therefore the bin counts in simulation and ob-
served data also change with z.

In practice, samples at various values of z can often
be produced cheaply from a single simulated MC sample
by shifting the value of z and recomputing all the rel-
evant physics variables, and this approach will be used
for the studies in Sec. V. Care must be taken to apply
any kinematic selection on these variables only after the
shift. In these studies, the templates and the ‘observed
dataset’ are built using the same test dataset because the

dataset used in Sec. V is not large enough to split into
three representative datasets.

The fitted value of µ is obtained by minimizing Eq. 4.
Uncertainties are accounted for by studying the depen-
dence of the likelihood near the fitted value µ̂ while op-
timizing over z. The power of each approach is deter-
mined by their relative uncertainties in µ. As a diagnos-
tic, the parameter of interest may be profiled over instead
to check if the measurement over-constrains the nuisance
parameter.

IV. GAUSSIAN EXAMPLE

To illustrate the di↵erent approaches in a simple set-
ting with complete analytic control, we begin with a
Gaussian example with a two-dimensional feature space
and a single nuisance parameter. Signal events are drawn
from Gaussian distributions in the two features, with
means at cos (z) and sin (z), respectively; the width of
each is set to 0.7. Background events are generated in
same fashion, but with means for the two features at
� cos (z) and � sin (z) respectively. An example of the
signal and background distributions for z = ⇡

4 is shown
in Fig. 2.

A set of 4.2 ⇥ 107 events are generated at 21 values
of z equally spaced between 0 and ⇡/2. The dataset is
split into training and test sets with a ratio of 3:1. All
signal events in the test set have a weight of 10�3 and
all background events have a weight of 10�1 to mimic a
rare signal typical of LHC analyses. Ten bins are used
to construct the template and observed histograms. The
parameter of interest is the signal strength µ with a true
value of 1.

z = �/4

FIG. 2: Contour of probability densities for signal and
background hypotheses in the two-dimensional feature
space for the simple Gaussian demonstration case, with

the nuisance parameter fixed to z = ⇡
4 .

Observable 1

O
bs

er
va

bl
e

2

O
bs

er
va

bl
e

2

Observable 1

O
bs

er
va

bl
e

2

Observable 1

6

B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of

7

zT = 0

zT = �
4

zT = �
2 zT = �

2

zT = �
4

zT = 0

Score

N
um

be
r o

f e
ve

nt
s

no
rm

al
iz

ed
 to

 u
ni

ty

N
um

be
r o

f e
ve

nt
s

no
rm

al
iz

ed
 to

 u
ni

ty

Score

(a) Baseline 7

zT = 0

zT = �
4

zT = �
2 zT = �

2

zT = �
4

zT = 0

Score

N
um

be
r o

f e
ve

nt
s

no
rm

al
iz

ed
 to

 u
ni

ty

N
um

be
r o

f e
ve

nt
s

no
rm

al
iz

ed
 to

 u
ni

ty

Score

(b) Uncertainty Aware

FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
data where z = ⇡

4

(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.

Likelihood

3

output a score (see e.g. [50]),

s(x) =
p(x|z = z0, S)

p(x|z = z0, S) + p(x|z = z0, B)
, (1)

where

p(·) denotes a probability density, S represents the sig-
nal class and B represents the background class. The
score of the network is used as an observable with high
sensitivity to the parameter of interest for the final mea-
surement.

C. Data Augmentation

An alternative method is to augment the training data
to include signal and background samples with several
values of the nuisance parameters. A network trained
optimally to minimise a BCE loss learns the score,

s(x) =
hp(x|Z, S)ipZ

hp(x|Z, S)ipZ + hp(x|Z,B)ipZ

, (2)

where pZ is the probability density over the nuisance pa-
rameter Z, treated as a random variable with some prob-
ability density chosen by the experimenter. Typically, Z
is discrete and has a nonzero probability mass at only a
few values. The score s(x) is then treated in the same
way as in the baseline case (Eq. 1).

D. Adversarial Training

An orthogonal strategy is to train a classifier with the
explicit objective of being insensitive to the e↵ects of the
nuisance parameter. Our implementation follows the ad-
versarial training prescription of Ref. [12]. However, to
improve the training stability and speed, the classifier
and adversary are concatenated together through a gra-
dient reversal layer [51] and trained simultaneously. The
classifier is trained with the objective to minimize the
classification loss and maximise the adversarial loss and
the second loss has a relative weight of �, a tunable hyper-
parameter.

While training for exact invariance in this adversarial
setup can be tricky [52], maximizing overall sensitivity
requires a compromise between the level of invariance to
nuisance parameters and the classification power. The
Gaussian case described in Sec. IV is an extreme exam-
ple where exact invariance to the nuisance parameter re-
quires zero discriminating power for the classifier.

In the end, the score of the classifier on observed data
is used as an observable in the final measurement, in the
same way as for the baseline classifier.

E. Uncertainty-Aware Classifier

The concept explored in this paper is to parameter-
ize the network in the nuisance parameters; see Fig. 1.
Specifically, the network is trained with the true value
of the nuisance parameter z as an input to the network
in additional to the observables x. A network trained
optimally to minimise a BCE loss learns the score,

s(x, z) =
p(x|Z = z, S)

p(x|Z = z, S) + p(x|Z = z,B)
. (3)

The score of this classifier is not used as a single ob-
servable for the final fit as in the previous methods. At
evaluation time, while the x values remain fixed as inputs
to the network, the unknown z is left as a parameter, al-
lowing for later profiling over the nuisance parameters in
the final measurement.

Importantly, note that Eq. 3 depends on z. This means
that the calculation of analysis observable(s) depends on
z and change as the nuisance parameter is varied, during
the evaluation of uncertainties and/or during nuisance
parameter profiling. This is in contrast to the standard
search paradigm in which the calculation of the analysis
observables are fixed and the sensitivity to z is evaluated
post-hoc. Allowing the calculation of the analysis ob-
servables to depend explicitly on the value of z is not the
traditional approach, but it does not require that the ex-
perimenter have any special knowledge of z. Formation
of a confidence interval in the space of model parameters
(either parameters of interest or nuisance parameters)
naturally requires calculating the likelihood ratio of the
model as those parameters vary, relative to the best-fit
parameters. It is natural for the calculation of the anal-
ysis observable, a proxy for the likelihood ratio, to vary
with those parameters. One can later profile over the
nuisance parameters to capture the impact of our lack of
knowledge of its true value. The traditional approach of
fixing the analysis observable calculation can be thought
of as an ad-hoc approximation of the full method.

.	.
	.

3

z

x1
x2

f(x1, x2, . . . , z)

.	.
	.

.	.
	.

FIG. 1: The architecture of an uncertainty-aware
network, in which the nuisance parameter z is treated
as a feature alongside the observed data x, learning a

decision function which varies with the nuisance
parameter.

9

Opposite of decorrelation: Uncertainty-aware learning

• Propagate uncertainties through the classifier in an “uncertainty aware” way

Similar to 1601.07913

• Intuition: Allow the analysis technique to vary with Z
 You always get the best classifier for each value of Z

• Profile Z + incorporate prior

Data
 with Z = ?Repeat for each hypothesis z

PRD.104.056026: Aishik Ghosh, Benjamin Nachman, and Daniel Whiteson

7KH�3URILOH�/LNHOLKRRG�DSSURDFK

�

Ɣ 7KH�SURILOH�OLNHOLKRRG�LV�D�ZD\�WR�LQFOXGH�V\VWHPDWLF�XQFHUWDLQWLHV�LQ�WKH�OLNHOLKRRG
ż V\VWHPDWLFV�LQFOXGHG�DV��FRQVWUDLQHG��QXLVDQFH�SDUDPHWHUV
ż WKH�LGHD�EHKLQG�LV�WKDW�V\VWHPDWLF�XQFHUWDLQWLHV�RQ�WKH�PHDVXUHPHQW�RI�w�FRPH�IURP�

LPSHUIHFW�NQRZOHGJH�RI�SDUDPHWHUV�RI�WKH�PRGHO��6�DQG�%�SUHGLFWLRQ�
Ŷ VWLOO�VRPH�NQRZOHGJH�LV�LPSOLHG���ƅ� �ƅ��s�Ţƅ�

ż H[WHUQDO���D�SULRUL�NQRZOHGJH�LQWHUSUHWHG�DV��DX[LOLDU\�VXEVLGLDU\�PHDVXUHPHQW���
LPSOHPHQWHG�DV�FRQVWUDLQW�SHQDOW\�WHUP��L�H��SUREDELOLW\�GHQVLW\�IXQFWLRQ
�XVXDOO\�*DXVVLDQ��LQWHUSUHWLQJ��sŢƅ��DV�*DXVVLDQ�VWDQGDUG�GHYLDWLRQ�

� XVXDOO\�ș� ��DQG�ǻș ���FRQYHQWLRQ�
� GHILQH�HIIHFW�RI�V\VWHPDWLF�M�RQ�SUHGLFWLRQ�[�LQ�ELQ�L�DW������DQG������
� WKHQ�LQWHUSRODWH�	�H[WUDSRODWH�IRU�DQ\�YDOXH�RI�ș�

https://arxiv.org/abs/1601.07913
https://doi.org/10.1103/PhysRevD.104.056026

10

Use a more general function

Instead of building an observable for assumed NPs , build a general one

Promote NPs to PIO and scan over all possibilities of

O(xi) := O(xi, ν0) O(xi, ν)

μ, ν

6

B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of

7

zT = 0

zT = �
4

zT = �
2 zT = �

2

zT = �
4

zT = 0

Score

N
um

be
r o

f e
ve

nt
s

no
rm

al
iz

ed
 to

 u
ni

ty

N
um

be
r o

f e
ve

nt
s

no
rm

al
iz

ed
 to

 u
ni

ty

Score

(a) Baseline 7

zT = 0

zT = �
4

zT = �
2 zT = �

2

zT = �
4

zT = 0

Score

N
um

be
r o

f e
ve

nt
s

no
rm

al
iz

ed
 to

 u
ni

ty

N
um

be
r o

f e
ve

nt
s

no
rm

al
iz

ed
 to

 u
ni

ty

Score

(b) Uncertainty Aware

FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
data where z = ⇡

4

(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.

11

Scan the 2D Likelihood space in () vs Z := ν μ

Template Baseline Classifier Score Histograms for various Z

Nominal

Syst Down

Syst Up
Observed Data
(unknown)zT

6

B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of

7

zT = 0

zT = �
4

zT = �
2 zT = �

2

zT = �
4

zT = 0

Score

N
um

be
r o

f e
ve

nt
s

no
rm

al
iz

ed
 to

 u
ni

ty

N
um

be
r o

f e
ve

nt
s

no
rm

al
iz

ed
 to

 u
ni

ty

Score

(a) Baseline 7

zT = 0

zT = �
4

zT = �
2 zT = �

2

zT = �
4

zT = 0

Score

N
um

be
r o

f e
ve

nt
s

no
rm

al
iz

ed
 to

 u
ni

ty

N
um

be
r o

f e
ve

nt
s

no
rm

al
iz

ed
 to

 u
ni

ty

Score

(b) Uncertainty Aware

FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
data where z = ⇡

4

(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.

Minimum

zT → True z
Then profile over Z

7

the o�cial ATLAS software [65]. The three largest back-
grounds from Z/�

⇤ ! ⌧⌧ , tt̄ and W + jets are simulated
with the same chain and mixed in proportions deter-
mined by their relative cross sections. Di↵erent aspects
of the Z/�

⇤ ! ⌧⌧ background are simulated with Alp-

gen, Pythia8, Herwig, and Sherpa [66]; the details
can be found in Table 1 of Ref. [58]. The tt̄ background is
simulated with Powheg and Pythia8 and the W +jets
background is simulated withAlpgen [67] and Pythia8.

(a) Data generated with z = ⇡
4 .

(b) Data generated with z = ⇡
2 .

FIG. 6: The profile likelihood maxz L(µ, z) as a
function of the parameter of interest, µ for likelihoods

calculated with templates built from the various
classifiers. Narrower curves indicate more precise

measurements having accounted for systematic and
statistical uncertainties. The baseline classifier assumes

z = ⇡
4 , and matches the performance of the

uncertainty-aware classifier in data generated with
z = ⇡

4 (top). In data generated with z = ⇡
2 , the power

of all classifiers other than the uncertainty-aware
classifier become significantly weaker.

Each event is characterized by 29 features2, including the
lepton momenta and angles, the magnitude and direction
of missing transverse momentum, the energy and angles
of leading and sub-leading jets, and several other primary
and derived variables. See Ref. [56] for details.
The most important nuisance parameter is the un-

known absolute energy scale of the hadronically decaying
⌧ leptons. We follow prior studies [52, 59] and model this
using a skewing function [69] which is applied to the ⌧ lep-
ton ET, for signal and background alike. The minimum
ET threshold of 22 GeV is applied after skewing.
At the nominal value of the nuisance parameter, z = 1,

the ⌧ lepton energies are left unchanged. The impact of
z = 0.9 or 1.1, on several features is shown in Fig. 7.
The (unweighted) total number of events that pass the
ET threshold for the z = 0.9, z = 1 and z = 1.1 datasets
are 618906, 719349 and 818201 respectively. The data are
split into training and test set in the ratio 2:1. Since the
data at various values of z are generated from the nominal
sample, the samples are to a large extent correlated. The
train-test split therefore is determined before the skewing
function and ET threshold are applied, ensuring complete
independence between training and test sets.
Thirty bins are used to construct the template and

observed histograms.

A. Description of Trained Models

All methods were implemented using neural networks.
The baseline classifier was trained only on data at z = 1,
while the data augmentation classifier, uncertainty-aware
classifier and the adversarial classifier are all trained at
24 values spaced between z = 0.7 and z = 1.4. Two
additional classifiers were also trained on data at z = 0.8
and z = 1.1 to estimate the best possible performance
for an unparameterized classifier at these values of the
nuisance parameter.
Technical details about the training procedure and ar-

chitectures of the models are given below.

1. Baseline Classifier

The neural network comprises 10 hidden layers with
512 nodes each, ReLU activations and L2 kernel regu-
larizers for all but the first hidden layer and a final layer
with a single node and sigmoid activation. It was trained
with an RMSProp optimizer, BCE loss and a batch size
of 4096.

2 The DER mass MMC feature listed in Ref. [56] was not included
in the studies, following precedent set by Ref. [52], because the
Missing Mass Calculator [68] is slow to run and as an MCMC
algorithm, introduces an additional source of stochasticity which
makes comparisons di�cult.

12

More sensitivity !

Narrower ⇒ Smaller [statistical + systematic] uncertainty on
measurement

Practical for LHC analysis: Parameterise your main
nuisance parameter but no need to train on all 100 NPs

Narrower is better

Signal Strength

Subsequently applied to astrophysics problems

Can we do similar things for theory uncertainties ?

Not at the moment..

14

Model will learn to fool you !

Pythia

Herwig

Sherpa

Next year’s
generator

Nature

Estimated Uncertainty

Default

Pythia
Herwig

Sherpa

Next year’s
generator

Nature

Estimated Uncertainty

What you get with decorrelationWhat you want with decorrelation

Pythia
Herwig
Sherpa

Next year’s
generator

Nature

Estimated Uncertainty

EPJC:s10052.022.10012.w: Aishik Ghosh, Benjamin Nachman

Pythia

Herwig

Sherpa

Next year’s
generator

Nature

Estimated Uncertainty

Default

Pythia
Herwig

Sherpa

Next year’s
generator

Nature

Estimated Uncertainty

What you get with decorrelationWhat you want with decorrelation

Pythia
Herwig
Sherpa

Next year’s
generator

Nature

Estimated Uncertainty

Instruction to ML: “Please shrink Pythia vs Herwig difference”

ML-decorrelating theory uncertainties

ML methods don’t often generalise the way you would hope

Shrink uncertainty to hadronization modeling

https://link.springer.com/article/10.1140/epjc/s10052-022-10012-w

Case Study 2: Uncertainties from varying unphysical scales at LO

ROC curve (higher is better)

Figure 6. Top: the performance of the nominal t-channel single top versus W+jets classifier. The
blue band represents the uncertainty estimated by varying the factorization scale by 1

2 and 2 at LO.
Bottom: the same as the top, but for the adversarially trained classifier. Adversarial training only
reduces the di↵erence in performance to factorization scale variations, not the di↵erence to NLO,
indicating that adversarial training provides a reduced estimate of the true uncertainty, which does
not translate to a reduction in the true uncertainty.

– 11 –
N

o
ad

ve
rs

ar
yAdversary successfully sacrifices

separation power in order to reduce
difference in performance between scale
variations

Cross-check with NLO reveals uncertainty
severely underestimated by decorrelation
approach

In an typical LHC analysis, a cross-check
with higher-order usually unavailable

W
ith

 a
dv

er
sa

ry

Figure 6. Top: the performance of the nominal t-channel single top versus W+jets classifier. The
blue band represents the uncertainty estimated by varying the factorization scale by 1

2 and 2 at LO.
Bottom: the same as the top, but for the adversarially trained classifier. Adversarial training only
reduces the di↵erence in performance to factorization scale variations, not the di↵erence to NLO,
indicating that adversarial training provides a reduced estimate of the true uncertainty, which does
not translate to a reduction in the true uncertainty.

– 11 –

Decorrelation:
Only the error bars

shrink, not the actual
distance to NLO

As an experimentalist, I want to understand theory uncertainties better

If left to our own devices, here’s how we’d go…

Questions

• How accurate are these scale uncertainties ?

• Is 1/2 to 2 a good range ?

Madgraph paper

(Not a random sampling)

+127 more pp processes from 1405.0301!

Alwall et al.

tscale =
σNLO − σLO

ΔσLO scale

Study pull distribution

μ+ = 2 μ0

μ− = 1
2 μ0

Up:

Down:

https://link.springer.com/article/10.1007/JHEP07(2014)079

Plot the pulls

What does it look like?
Which of these distributions do you expect?

tscale =
σNLO − σLO

ΔσLO scale

Statistical patterns of scale variation uncertainties at LO

tscale =
σNLO − σLO

ΔσLO scale

Study pull distribution

SciPost Physics Submission

Figure 1: Performance of the uncertainty estimation in LO cross section calculations.
Shown is the scale-based pull tscale, defined in Eq.(12). Pulls greater than 25 are
shown at 25. Blue entries with |tscale|< 4 are included in the Gaussian fit (red).

example, the pull is almost always greater than zero, which aligns with our expectation that
cross-section estimates tend to grow as additional partonic channels are included beyond LO.
There also appears to be a core distribution which is locally approximately normally distributed
with unit variance, indicating that for many processes, the central scale and the scale variation
are accurate indicators for the NLO result.

In addition, there is a very long positive tail, indicating many processes, where the uncer-
tainty is dramatically underestimated. The complete list of processes and the associated pulls
are given in Tables 2-4. Many of the processes with underestimated uncertainties are those
with many particles and without QCD vertices. Indeed, unlike pure QCD processes, QCD cor-
rections to electroweak processes do not appear to be covered by the scale-based uncertainty
estimate. Numerically, the leading scale dependence in QCD processes is the renormaliza-
tion scale, and this scale dependence is absent in electroweak processes at LO, and is small
at NLO. For instance, di-lepton production at the LHC is a purely electroweak process and
only has a small factorization scale dependence at leading order, which does not cover the
NLO corrections. This problem extends beyond Drell-Yan [43], to di-boson [44], and tri-boson
production [45].

In addition to, generally predicting uncertainty estimates which are too small, electroweak
processes encounter large higher-order corrections for identifiable reasons [46, 47], e.g. due
to flavor symmetries and constrained topologies in Feynman diagrams. An example is the
process qq̄ ! Z bb̄, where the leading topology is qq̄ ! Z g⇤ ! Z bb̄, and a t-channel contri-
bution favoring large mbb only appears when an additional jet is added to the final state. This
challenges the scale variation scheme and leads to large QCD corrections [48]. Enhanced un-
certainties also appear in kinematic tails of electroweak processes, for example as electroweak
Sudakov logarithms and at times as large threshold corrections. Generally, for any observ-
able strongly sensitive to more than one relevant scale, large logarithms of their ratio tend to
enhance perturbative corrections, challenging the standard estimation of their uncertainties.

All these considerations depend on the details of the process and the phase space region
under consideration. While there is sufficient understanding to understand and post-dict pro-

7

arXiv:2210.15167: Aishik Ghosh, Benjamin Nachman, Tilman Plehn, Lily Shire, Tim M.P. Tait, and Daniel Whiteson

https://arxiv.org/abs/2210.15167

A desire to have a more meaningful NPs

3

output a score (see e.g. [50]),

s(x) =
p(x|z = z0, S)

p(x|z = z0, S) + p(x|z = z0, B)
, (1)

where

p(·) denotes a probability density, S represents the sig-
nal class and B represents the background class. The
score of the network is used as an observable with high
sensitivity to the parameter of interest for the final mea-
surement.

C. Data Augmentation

An alternative method is to augment the training data
to include signal and background samples with several
values of the nuisance parameters. A network trained
optimally to minimise a BCE loss learns the score,

s(x) =
hp(x|Z, S)ipZ

hp(x|Z, S)ipZ + hp(x|Z,B)ipZ

, (2)

where pZ is the probability density over the nuisance pa-
rameter Z, treated as a random variable with some prob-
ability density chosen by the experimenter. Typically, Z
is discrete and has a nonzero probability mass at only a
few values. The score s(x) is then treated in the same
way as in the baseline case (Eq. 1).

D. Adversarial Training

An orthogonal strategy is to train a classifier with the
explicit objective of being insensitive to the e↵ects of the
nuisance parameter. Our implementation follows the ad-
versarial training prescription of Ref. [12]. However, to
improve the training stability and speed, the classifier
and adversary are concatenated together through a gra-
dient reversal layer [51] and trained simultaneously. The
classifier is trained with the objective to minimize the
classification loss and maximise the adversarial loss and
the second loss has a relative weight of �, a tunable hyper-
parameter.

While training for exact invariance in this adversarial
setup can be tricky [52], maximizing overall sensitivity
requires a compromise between the level of invariance to
nuisance parameters and the classification power. The
Gaussian case described in Sec. IV is an extreme exam-
ple where exact invariance to the nuisance parameter re-
quires zero discriminating power for the classifier.

In the end, the score of the classifier on observed data
is used as an observable in the final measurement, in the
same way as for the baseline classifier.

E. Uncertainty-Aware Classifier

The concept explored in this paper is to parameter-
ize the network in the nuisance parameters; see Fig. 1.
Specifically, the network is trained with the true value
of the nuisance parameter z as an input to the network
in additional to the observables x. A network trained
optimally to minimise a BCE loss learns the score,

s(x, z) =
p(x|Z = z, S)

p(x|Z = z, S) + p(x|Z = z,B)
. (3)

The score of this classifier is not used as a single ob-
servable for the final fit as in the previous methods. At
evaluation time, while the x values remain fixed as inputs
to the network, the unknown z is left as a parameter, al-
lowing for later profiling over the nuisance parameters in
the final measurement.

Importantly, note that Eq. 3 depends on z. This means
that the calculation of analysis observable(s) depends on
z and change as the nuisance parameter is varied, during
the evaluation of uncertainties and/or during nuisance
parameter profiling. This is in contrast to the standard
search paradigm in which the calculation of the analysis
observables are fixed and the sensitivity to z is evaluated
post-hoc. Allowing the calculation of the analysis ob-
servables to depend explicitly on the value of z is not the
traditional approach, but it does not require that the ex-
perimenter have any special knowledge of z. Formation
of a confidence interval in the space of model parameters
(either parameters of interest or nuisance parameters)
naturally requires calculating the likelihood ratio of the
model as those parameters vary, relative to the best-fit
parameters. It is natural for the calculation of the anal-
ysis observable, a proxy for the likelihood ratio, to vary
with those parameters. One can later profile over the
nuisance parameters to capture the impact of our lack of
knowledge of its true value. The traditional approach of
fixing the analysis observable calculation can be thought
of as an ad-hoc approximation of the full method.

.	.
	.

3

z

x1
x2

f(x1, x2, . . . , z)

.	.
	.

.	.
	.

FIG. 1: The architecture of an uncertainty-aware
network, in which the nuisance parameter z is treated
as a feature alongside the observed data x, learning a

decision function which varies with the nuisance
parameter.

Experiments interpolate between up / down variations and fit NPs

Could we have a more physically motivated description of
uncertainties ? [Eg. Suggestion at Les Houches 2019]

Then we could meaningfully think of propagating / constraining
them…, better account for correlations when combining
measurements

A Possible Solution.

� = c0 + ↵s(µ)[c1 + ↵s(µ) c2 + · · ·
⇤

Identify the actual source of uncertainty
The unknown higher-order corrections: ↵s(µ) c2 + · · ·

Parametrize and vary the unknown
We often know quite a lot about the general structure of c2

I µ dependence, color structure, partonic channels, kinematic structure, ...

Suitably parametrize the missing pieces
I Simplest case: c2 is just a number
I More generally, have to parametrize an unknown function

Common/independent pieces between different predictions determine the
correlations between them

Frank Tackmann (DESY) Theory Uncertainties from Nuisance Parameters. 2019-06-14 7 / 17

μ+ = 2 μ0

μ− = 1
2 μ0

Up:

Down:

https://phystev.cnrs.fr/wiki/_media/2019:groups:sm:2019-06-14_lh_theorynps.pdf

Conclusion

• ML more sensitive to simulation artefacts → building better uncertainty propagation tools

• If we have meaningful theory NPs, we could do more: constrain these terms, better quantify
impact on measurements

• Opens the door to ML as interpretability tools to understand constrains

Neyman Construction

23

Hypothesis tests using arbitrary test statistic

→ p(t |μ1)

Reject Reject

P(t ∈ ω |H0) = α
H0 : μ = μ1

μ1

We can find the correct
cuts by throwing toys

24

Neyman Construction

μ1

Reject

Reject

Compatible

μ2

→ tμ

μ→

μ4

Notice can be different
for each

tμ
μ

25

→ tμ

μ→

Reject

Reject

Compatible

Data

μ+

μ-

Neyman Construction

26

Constructing the test statistic with neural networks

Network
Obs	Data

μ1

Log-Likelihood	Ratio	
(=	 ,	 =1)μ μ1 μ

Brehmer et al

Even if the LR is only approximate, Neyman Construction treats it as “just another test statistic” and finds
you the correct confidence intervals

Bypass the need for histograms & likelihood model based on Poisson distributions

https://arxiv.org/pdf/1907.10621.pdf

Pheno study to recover sensitivity lost due to quantum interference

27

CHAPTER 7. LIKELIHOOD-FREE INFERENCE

(a) SM, without rate (b) SM with rate

(c) µ = 2, without rate (d) µ = 2 with rate

(e) µ = 4, without rate (f) µ = 4 with rate

Figure 7.16 – Negative log likelihood curves for Asimov datasets generated at µ = 1, µ = 2, µ = 4
with and without using the total cross section (rate) information.

170

7.7. INFERENCE AND EVALUATION OF RESULTS

8

1 σ limits

Tr
ue

 v
al

ue

Improvement1 σ limits

Tr
ue

 v
al

ue

Improvement

(a)

1 σ limits

Tr
ue

 v
al

ue

(b)

7

1 σ limits

Tr
ue

 v
al

ue

Tr
ue

 v
al

ue

Improvement
Improvement

1 σ limits

(c)

Figure 7.15 – p-value scans for Asimov test dataset generated at (a) µ = 4, (b) µ = 2, and (c)
standard model (µ = 1) for a luminosity of 36 fb≠1 where the true value is indicated with the golden

vertical line and the 1‡ limit threshold indicated by the grey horizontal line

169

Narrower is better

s = 13 TeV, 36 fb−1

1σ limits

Proposed method
N

LL

Pheno study: Madgraph+Pythia+Delphes
VBF samples

hal-02971995v3: Aishik Ghosh, David Rousseau

“Traditional ML” method

https://hal.science/hal-02971995v3/

CHAPTER 7. LIKELIHOOD-FREE INFERENCE

(a) SM, without rate (b) SM with rate

(c) µ = 2, without rate (d) µ = 2 with rate

(e) µ = 4, without rate (f) µ = 4 with rate

Figure 7.16 – Negative log likelihood curves for Asimov datasets generated at µ = 1, µ = 2, µ = 4
with and without using the total cross section (rate) information.

170

7.7. INFERENCE AND EVALUATION OF RESULTS

8

1 σ limits

Tr
ue

 v
al

ue

Improvement1 σ limits

Tr
ue

 v
al

ue
Improvement

(a)

1 σ limits

Tr
ue

 v
al

ue

(b)

7

1 σ limits

Tr
ue

 v
al

ue

Tr
ue

 v
al

ue

Improvement
Improvement

1 σ limits

(c)

Figure 7.15 – p-value scans for Asimov test dataset generated at (a) µ = 4, (b) µ = 2, and (c)
standard model (µ = 1) for a luminosity of 36 fb≠1 where the true value is indicated with the golden

vertical line and the 1‡ limit threshold indicated by the grey horizontal line

169

2σ limits

s = 13 TeV, 36 fb−1

Expected sensitivity at μ=1

28

CHAPTER 7. LIKELIHOOD-FREE INFERENCE

(a) SM, without rate (b) SM with rate

(c) µ = 2, without rate (d) µ = 2 with rate

(e) µ = 4, without rate (f) µ = 4 with rate

Figure 7.16 – Negative log likelihood curves for Asimov datasets generated at µ = 1, µ = 2, µ = 4
with and without using the total cross section (rate) information.

170

7.7. INFERENCE AND EVALUATION OF RESULTS

8

1 σ limits

Tr
ue

 v
al

ue
Improvement1 σ limits

Tr
ue

 v
al

ue

Improvement

(a)

1 σ limits

Tr
ue

 v
al

ue

(b)

7

1 σ limits

Tr
ue

 v
al

ue

Tr
ue

 v
al

ue

Improvement
Improvement

1 σ limits

(c)

Figure 7.15 – p-value scans for Asimov test dataset generated at (a) µ = 4, (b) µ = 2, and (c)
standard model (µ = 1) for a luminosity of 36 fb≠1 where the true value is indicated with the golden

vertical line and the 1‡ limit threshold indicated by the grey horizontal line

169

2σ limits

1σ limits
Improvement

s = 13 TeV, 36 fb−1

2σ improvement: 9.5 to 7.9

hal-02971995v3: Aishik Ghosh, David Rousseau

Proposed method Proposed method

N
LL

N
LL

Pheno study: Madgraph+Pythia+Delphes
VBF samples

https://hal.science/hal-02971995v3/

29

Physics Data: HiggsML + Tau Energy Scale (TES) Uncertainty

Parameter of Interest is Higgs signal strength μ, and
TES is the nuisance parameter Z

8

2. Data Augmentation

The network comprises 10 hidden layers, each with 64
nodes, a ReLU activation, and L2 kernel regularizers for
all but the first hidden layer and a final layer with sig-
moid activation. The network was trained with an Adam

(a) p⌧t (GeV)

(b) �MET
centrality

(c) mlep,MET
t (GeV)

FIG. 7: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for
background processes. a the transverse momentum of
the hadronic ⌧ , b the centrality in � of the missing

transverse energy vector with respect to the hadronic ⌧

and the lepton, c transverse mass of the missing
transverse energy and the lepton.

optimizer [70], BCE loss and a batch size of 4096.

0 50 100 150 200

p�
t (GeV)

0

20

40

60

80

N
um

be
r

of
E
ve

nt
s H ! �lep�had

HiggsML Dataset

H ! �lep�had

HiggsML Dataset

H ! �lep�had

HiggsML Dataset
z=0.9

z=1.0

z=1.1

(a) p⌧t (GeV)

(b) �MET
centrality

(c) mlep,MET
t (GeV)

FIG. 8: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for

signal. a the transverse momentum of the hadronic ⌧ , b
the centrality in � of the missing transverse energy

vector with respect to the hadronic ⌧ and the lepton, c
transverse mass of the missing transverse energy and

the lepton.

8

2. Data Augmentation

The network comprises 10 hidden layers, each with 64
nodes, a ReLU activation, and L2 kernel regularizers for
all but the first hidden layer and a final layer with sig-
moid activation. The network was trained with an Adam

(a) p⌧t (GeV)

(b) �MET
centrality

0 50 100 150 200 250

mlep,MET
t (GeV)

0

10000

20000

30000

N
um

be
r

of
E
ve

nt
s

Z/�� ! �lep�had,

tt̄, W + jets
HiggsML Dataset

Z/�� ! �lep�had,

tt̄, W + jets
HiggsML Dataset

Z/�� ! �lep�had,

tt̄, W + jets
HiggsML Dataset

z=0.9

z=1.0

z=1.1

(c) mlep,MET
t (GeV)

FIG. 7: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for
background processes. a the transverse momentum of
the hadronic ⌧ , b the centrality in � of the missing

transverse energy vector with respect to the hadronic ⌧

and the lepton, c transverse mass of the missing
transverse energy and the lepton.

optimizer [70], BCE loss and a batch size of 4096.

(a) p⌧t (GeV)

(b) �MET
centrality

(c) mlep,MET
t (GeV)

FIG. 8: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for

signal. a the transverse momentum of the hadronic ⌧ , b
the centrality in � of the missing transverse energy

vector with respect to the hadronic ⌧ and the lepton, c
transverse mass of the missing transverse energy and

the lepton.

8

2. Data Augmentation

The network comprises 10 hidden layers, each with 64
nodes, a ReLU activation, and L2 kernel regularizers for
all but the first hidden layer and a final layer with sig-
moid activation. The network was trained with an Adam

(a) p⌧t (GeV)

�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5

�MET
centrality

0

50000

100000

150000

200000

N
um

be
r

of
E
ve

nt
s Z ! �lep�had,

tt̄, W + jets
HiggsML Dataset

Z ! �lep�had,

tt̄, W + jets
HiggsML Dataset

Z ! �lep�had,

tt̄, W + jets
HiggsML Dataset

z=0.9

z=1.0

z=1.1

(b) �MET
centrality

(c) mlep,MET
t (GeV)

FIG. 7: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for
background processes. a the transverse momentum of
the hadronic ⌧ , b the centrality in � of the missing

transverse energy vector with respect to the hadronic ⌧

and the lepton, c transverse mass of the missing
transverse energy and the lepton.

optimizer [70], BCE loss and a batch size of 4096.

(a) p⌧t (GeV)

(b) �MET
centrality

(c) mlep,MET
t (GeV)

FIG. 8: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for

signal. a the transverse momentum of the hadronic ⌧ , b
the centrality in � of the missing transverse energy

vector with respect to the hadronic ⌧ and the lepton, c
transverse mass of the missing transverse energy and

the lepton.

30

Physics Data: HiggsML + Tau Energy Scale (TES) Uncertainty

Uncertainty-Aware coincides with classifier trained on
true Z

⇒ Can’t get much better than that!

10

(a) Systematic Down Data (b) Nominal Data (c) Systematic Up Data

FIG. 9: Physics Dataset: Profiled NLL curves for all four classifiers evaluated on a systematic down (zT = 0.8), b
nominal data (zT = 1.0) and c systematic up data (zT = 1.1) where the true value of µ is 1. Narrower curves

indicate more precise measurements having accounted for systematic and statistical uncertainties.

Narrower is better

Up is better

μ = 1, Z= 0.8

(Signal Strength)Simulations from ATLAS

31

Test performance for “observed” data at nominal and above nominal Z

In every case the Aware Classifier is as good as the optimal one, no other technique
matches its performance everywhere

10

(a) Systematic Down Data (b) Nominal Data (c) Systematic Up Data

FIG. 9: Physics Dataset: Profiled NLL curves for all four classifiers evaluated on a systematic down (zT = 0.8), b
nominal data (zT = 1.0) and c systematic up data (zT = 1.1) where the true value of µ is 1. Narrower curves

indicate more precise measurements having accounted for systematic and statistical uncertainties.

Aware and Baseline coincide

10

(a) Systematic Down Data (b) Nominal Data (c) Systematic Up Data

FIG. 9: Physics Dataset: Profiled NLL curves for all four classifiers evaluated on a systematic down (zT = 0.8), b
nominal data (zT = 1.0) and c systematic up data (zT = 1.1) where the true value of µ is 1. Narrower curves

indicate more precise measurements having accounted for systematic and statistical uncertainties.

Aware and locally optimal
coincide

μ = 1, Z= 1 (nominal)
μ = 1, Z= 1.1

32

Idea fascinating also to ML researchers !

For my handwriting this is ‘2’, for yours it might be ‘a’
ARM: Adapt to the individual + classify

arXiv:2007.02931

Adaptive Risk Minimization:
Learning to Adapt to Domain Shift

Marvin Zhang⇤1, Henrik Marklund⇤2, Nikita Dhawan⇤1,
Abhishek Gupta1, Sergey Levine1, Chelsea Finn2

1 UC Berkeley, 2 Stanford University

Abstract

A fundamental assumption of most machine learning algorithms is that the training
and test data are drawn from the same underlying distribution. However, this as-
sumption is violated in almost all practical applications: machine learning systems
are regularly tested under distribution shift, due to changing temporal correlations,
atypical end users, or other factors. In this work, we consider the problem setting
of domain generalization, where the training data are structured into domains and
there may be multiple test time shifts, corresponding to new domains or domain
distributions. Most prior methods aim to learn a single robust model or invariant
feature space that performs well on all domains. In contrast, we aim to learn models
that adapt at test time to domain shift using unlabeled test points. Our primary
contribution is to introduce the framework of adaptive risk minimization (ARM),
in which models are directly optimized for effective adaptation to shift by learning
to adapt on the training domains. Compared to prior methods for robustness, in-
variance, and adaptation, ARM methods provide performance gains of 1-4% test
accuracy on a number of image classification problems exhibiting domain shift.

1 Introduction

The standard assumption in empirical risk minimization (ERM) is that the data distribution at test
time will match the training distribution. When this assumption does not hold, i.e., when there is
distribution shift, the performance of standard ERM methods can deteriorate significantly [54, 38].

Figure 1: An example of ambiguous data
points in handwriting classification, eval-
uated quantitatively in Section 5.

As an example which we study quantitatively in Section 5,
consider a handwriting classification model that, after
training on data from past users, is deployed to new end
users. Each new user represents a new test distribution that
differs from the training distribution. Thus, each test set-
ting involves dealing with shift. In Figure 1, we visualize
a batch of 50 examples from a test user, and we highlight
an ambiguous example which may be either a “2” (written
with a loop) or an “a” (in the double-storey style) depend-
ing on the user’s handwriting. Due to the biases in the
training data, an ERM trained model incorrectly classifies
this example as “2”. However, we can see that the batch of
images from this test user contains other examples of “2”
(written without loops) and “a” (also double-storey) from
this user. Can we somehow leverage this unlabeled data
to better handle test shifts caused by new users?

⇤equal contribution

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

ar
X

iv
:2

00
7.

02
93

1v
4

 [c
s.L

G
]

1
D

ec
 2

02
1

• ML researchers assume i.i.d

• This technique exploits correlations between samples – a different paradigm

• Interesting applications outside of physics

arXiv:2007.02931

Adaptive Risk Minimization:
Learning to Adapt to Domain Shift

Marvin Zhang⇤1, Henrik Marklund⇤2, Nikita Dhawan⇤1,
Abhishek Gupta1, Sergey Levine1, Chelsea Finn2

1 UC Berkeley, 2 Stanford University

Abstract

A fundamental assumption of most machine learning algorithms is that the training
and test data are drawn from the same underlying distribution. However, this as-
sumption is violated in almost all practical applications: machine learning systems
are regularly tested under distribution shift, due to changing temporal correlations,
atypical end users, or other factors. In this work, we consider the problem setting
of domain generalization, where the training data are structured into domains and
there may be multiple test time shifts, corresponding to new domains or domain
distributions. Most prior methods aim to learn a single robust model or invariant
feature space that performs well on all domains. In contrast, we aim to learn models
that adapt at test time to domain shift using unlabeled test points. Our primary
contribution is to introduce the framework of adaptive risk minimization (ARM),
in which models are directly optimized for effective adaptation to shift by learning
to adapt on the training domains. Compared to prior methods for robustness, in-
variance, and adaptation, ARM methods provide performance gains of 1-4% test
accuracy on a number of image classification problems exhibiting domain shift.

1 Introduction

The standard assumption in empirical risk minimization (ERM) is that the data distribution at test
time will match the training distribution. When this assumption does not hold, i.e., when there is
distribution shift, the performance of standard ERM methods can deteriorate significantly [54, 38].

Figure 1: An example of ambiguous data
points in handwriting classification, eval-
uated quantitatively in Section 5.

As an example which we study quantitatively in Section 5,
consider a handwriting classification model that, after
training on data from past users, is deployed to new end
users. Each new user represents a new test distribution that
differs from the training distribution. Thus, each test set-
ting involves dealing with shift. In Figure 1, we visualize
a batch of 50 examples from a test user, and we highlight
an ambiguous example which may be either a “2” (written
with a loop) or an “a” (in the double-storey style) depend-
ing on the user’s handwriting. Due to the biases in the
training data, an ERM trained model incorrectly classifies
this example as “2”. However, we can see that the batch of
images from this test user contains other examples of “2”
(written without loops) and “a” (also double-storey) from
this user. Can we somehow leverage this unlabeled data
to better handle test shifts caused by new users?

⇤equal contribution

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

ar
X

iv
:2

00
7.

02
93

1v
4

 [c
s.L

G
]

1
D

ec
 2

02
1

https://arxiv.org/pdf/2007.02931.pdf
https://arxiv.org/pdf/2007.02931.pdf

33

Case Study 1: Two-point uncertainty (fragmentation modelling)

Figure 2. The seven inputs used to train a classifier to distinguish boosted W boson jets from
generic QCD jets events.

focus on the region near 10-15% signal e�ciency, which is a typical working point for LHC

analyses. In this range, the background rejection (inverse QCD e�ciency) is between a few

hundred and a few thousand.

A second network is trained as part of an adversarial approach. This second network

uses both Pythia and Herwig events and minimizes the following loss:

L[f, g] =�

0

@
X

i2W
log(f(xi))�

X

i2QCD

log(1� f(xi))

1

A

+ �

0

@
X

i2Pythia
log(g(f(xi), yi))�

X

i2Herwig

log(1� g(f(xi), yi))

1

A , (3.1)

where yi = 0 for W jets and yi = 1 for QCD jets. Furthermore, � = 10. Note that

unlike Eq. 2.1, Eq. 3.1 has the labels as part of the function for the adversary. This means

– 5 –

Figure 2. The seven inputs used to train a classifier to distinguish boosted W boson jets from
generic QCD jets events.

focus on the region near 10-15% signal e�ciency, which is a typical working point for LHC

analyses. In this range, the background rejection (inverse QCD e�ciency) is between a few

hundred and a few thousand.

A second network is trained as part of an adversarial approach. This second network

uses both Pythia and Herwig events and minimizes the following loss:

L[f, g] =�

0

@
X

i2W
log(f(xi))�

X

i2QCD

log(1� f(xi))

1

A

+ �

0

@
X

i2Pythia
log(g(f(xi), yi))�

X

i2Herwig

log(1� g(f(xi), yi))

1

A , (3.1)

where yi = 0 for W jets and yi = 1 for QCD jets. Furthermore, � = 10. Note that

unlike Eq. 2.1, Eq. 3.1 has the labels as part of the function for the adversary. This means

– 5 –

Goal: W jets vs QCD jets
Decorrelation: Reduce difference in performance on Herwig vs Pythia

Cross-check: Test uncertainty estimate from {Herwig vs Pythia} using Sherpa

34

Case Study 1: Two-point uncertainty - Result

Figure 3. The QCD rejection (inverse QCD e�ciency) as a function of the W jet e�ciency for
classifiers applied to Pythia, Herwig, and Sherpa jets. The solid lines correspond to the nominal
classifier trained with Pythia while the dotted lines correspond to the adversarial setup that uses
both Pythia and Herwig. The bottom panel shows the relative absolute di↵erence with respect
to Pythia (nominal or adversarial, as appropriate). Note that the lower panel has a logarithmic
vertical axis. While adversarial training reduces the di↵erence in performance between Pythia and
Herwig, the di↵erence to Sherpa remains large, indicating that the the true uncertainty will be
underestimated if a third independent sample is unavailable.

clustering, implemented using FastJet 3.2.1 [54, 72] and the anti-kt algorithm [55] with

radius parameter R = 0.5. For simplicity, W bosons are forced to decay into muons and

events are required to have at least one isolated and identified muon using the default

reconstruction algorithm in Delphes. Usually, one uses the highest precision method

possible and then scale variations give the uncertainty from the finite truncation of the

perturbative series. In order to compare with the ‘true’ uncertainty, we artificially truncate

the series early and then use the higher-order calculation as the reference uncertainty. In

particular, the nominal simulation is performed at leading order (LO) in the strong coupling

constant and then an additional sample for the t-channel process is simulated at next-to-

leading order (NLO).

For the machine learning, events are represented by 12 numbers: the three-momentum

of the muon, the four-momentum of the leading two jets, and the scalar sum of the trans-

verse momenta of all jets (HT). Momenta are specified by pT , ⌘, and �. Histograms for

each of the observables for single top t-channel and W+jets are shown in Fig. 4. The jet

pT spectra are harder for single top compared with W jets and the muons (jets) tend to

– 7 –

Adversary successfully sacrifices separation
power in order to reduce difference in
performance between Herwig and Pythia

Cross-check with Sherpa reveals uncertainty
severely underestimated by usual Herwig vs
Pythia comparison

In an typical LHC analysis, a cross-check with
third generator rarely performed, similar to prior
work suggesting decorrelation for theory
uncertainties

ROC curve (higher is better)

Estimated uncertainty

‘True’
uncertainty

35

Case Study 2: Higher-order corrections

• We can’t calculate QFT to infinite order

• Artefact of truncation of series: Varying certain unphysical scales changes predictions

• Uncertainty quantification: Vary scales (renormalization scale, factorisation scale) between 1/2
to 2 in MC, see change in prediction

36

Scale uncertainty – Problem Setup

be more central (forward) for single top compared with W+jets.

Figure 4. The 12 inputs used to train a classifier to distinguish single top events from W+jets
events.

The impact of factorization scale variations is shown in Fig. 5. All variations are

normalized to unity, as the impact on the total cross section is not relevant for per-event

classification performance. As expected, the variation for all � observables is negligible and

the biggest variation occurs for the transverse momenta.

The default performance for a classifier trained to distinguish single top events from

W+jets events is shown in the top plot of Fig. 6. The W+rejection at a single top e�ciency

of 10% is about 75, with about 15% lower rejection when the single top is simulated at

NLO. Similarly to the fragmentation modeling, an adversarial network is also trained to

reduce the sensitivity to factorization scale variations. Since the scale variation is now

– 8 –

be more central (forward) for single top compared with W+jets.

Figure 4. The 12 inputs used to train a classifier to distinguish single top events from W+jets
events.

The impact of factorization scale variations is shown in Fig. 5. All variations are

normalized to unity, as the impact on the total cross section is not relevant for per-event

classification performance. As expected, the variation for all � observables is negligible and

the biggest variation occurs for the transverse momenta.

The default performance for a classifier trained to distinguish single top events from

W+jets events is shown in the top plot of Fig. 6. The W+rejection at a single top e�ciency

of 10% is about 75, with about 15% lower rejection when the single top is simulated at

NLO. Similarly to the fragmentation modeling, an adversarial network is also trained to

reduce the sensitivity to factorization scale variations. Since the scale variation is now

– 8 –

be more central (forward) for single top compared with W+jets.

Figure 4. The 12 inputs used to train a classifier to distinguish single top events from W+jets
events.

The impact of factorization scale variations is shown in Fig. 5. All variations are

normalized to unity, as the impact on the total cross section is not relevant for per-event

classification performance. As expected, the variation for all � observables is negligible and

the biggest variation occurs for the transverse momenta.

The default performance for a classifier trained to distinguish single top events from

W+jets events is shown in the top plot of Fig. 6. The W+rejection at a single top e�ciency

of 10% is about 75, with about 15% lower rejection when the single top is simulated at

NLO. Similarly to the fragmentation modeling, an adversarial network is also trained to

reduce the sensitivity to factorization scale variations. Since the scale variation is now

– 8 –

be more central (forward) for single top compared with W+jets.

Figure 4. The 12 inputs used to train a classifier to distinguish single top events from W+jets
events.

The impact of factorization scale variations is shown in Fig. 5. All variations are

normalized to unity, as the impact on the total cross section is not relevant for per-event

classification performance. As expected, the variation for all � observables is negligible and

the biggest variation occurs for the transverse momenta.

The default performance for a classifier trained to distinguish single top events from

W+jets events is shown in the top plot of Fig. 6. The W+rejection at a single top e�ciency

of 10% is about 75, with about 15% lower rejection when the single top is simulated at

NLO. Similarly to the fragmentation modeling, an adversarial network is also trained to

reduce the sensitivity to factorization scale variations. Since the scale variation is now

– 8 –

be more central (forward) for single top compared with W+jets.

Figure 4. The 12 inputs used to train a classifier to distinguish single top events from W+jets
events.

The impact of factorization scale variations is shown in Fig. 5. All variations are

normalized to unity, as the impact on the total cross section is not relevant for per-event

classification performance. As expected, the variation for all � observables is negligible and

the biggest variation occurs for the transverse momenta.

The default performance for a classifier trained to distinguish single top events from

W+jets events is shown in the top plot of Fig. 6. The W+rejection at a single top e�ciency

of 10% is about 75, with about 15% lower rejection when the single top is simulated at

NLO. Similarly to the fragmentation modeling, an adversarial network is also trained to

reduce the sensitivity to factorization scale variations. Since the scale variation is now

– 8 –

be more central (forward) for single top compared with W+jets.

Figure 4. The 12 inputs used to train a classifier to distinguish single top events from W+jets
events.

The impact of factorization scale variations is shown in Fig. 5. All variations are

normalized to unity, as the impact on the total cross section is not relevant for per-event

classification performance. As expected, the variation for all � observables is negligible and

the biggest variation occurs for the transverse momenta.

The default performance for a classifier trained to distinguish single top events from

W+jets events is shown in the top plot of Fig. 6. The W+rejection at a single top e�ciency

of 10% is about 75, with about 15% lower rejection when the single top is simulated at

NLO. Similarly to the fragmentation modeling, an adversarial network is also trained to

reduce the sensitivity to factorization scale variations. Since the scale variation is now

– 8 –

Figure 5. The impact of factorization scale variations by a factor of 1/2 and 2, in increments of
0.1 (lighter colors are lower scales).

continuous, the adversary is trained using the mean squared error:

L[f, g] =�
X

µ

"0

@
X

i2LO t-chan

wi(µ) log(f(xi))�
X

i2LO W+jets

wi(µ) log(1� f(xi))

1

A

+ �

X

i2LO t-chan

wi (g(f(xi), yi)� µ)2
#
, (3.2)

where µ is the relative factorization scale. For each event, we can vary the factorization

scale through per-event weights wi and we use values µ 2 {0.5, 0.6..., 1.9, 2} for each event.

– 9 –

Figure 5. The impact of factorization scale variations by a factor of 1/2 and 2, in increments of
0.1 (lighter colors are lower scales).

continuous, the adversary is trained using the mean squared error:

L[f, g] =�
X

µ

"0

@
X

i2LO t-chan

wi(µ) log(f(xi))�
X

i2LO W+jets

wi(µ) log(1� f(xi))

1

A

+ �

X

i2LO t-chan

wi (g(f(xi), yi)� µ)2
#
, (3.2)

where µ is the relative factorization scale. For each event, we can vary the factorization

scale through per-event weights wi and we use values µ 2 {0.5, 0.6..., 1.9, 2} for each event.

– 9 –

Figure 5. The impact of factorization scale variations by a factor of 1/2 and 2, in increments of
0.1 (lighter colors are lower scales).

continuous, the adversary is trained using the mean squared error:

L[f, g] =�
X

µ

"0

@
X

i2LO t-chan

wi(µ) log(f(xi))�
X

i2LO W+jets

wi(µ) log(1� f(xi))

1

A

+ �

X

i2LO t-chan

wi (g(f(xi), yi)� µ)2
#
, (3.2)

where µ is the relative factorization scale. For each event, we can vary the factorization

scale through per-event weights wi and we use values µ 2 {0.5, 0.6..., 1.9, 2} for each event.

– 9 –

Figure 5. The impact of factorization scale variations by a factor of 1/2 and 2, in increments of
0.1 (lighter colors are lower scales).

continuous, the adversary is trained using the mean squared error:

L[f, g] =�
X

µ

"0

@
X

i2LO t-chan

wi(µ) log(f(xi))�
X

i2LO W+jets

wi(µ) log(1� f(xi))

1

A

+ �

X

i2LO t-chan

wi (g(f(xi), yi)� µ)2
#
, (3.2)

where µ is the relative factorization scale. For each event, we can vary the factorization

scale through per-event weights wi and we use values µ 2 {0.5, 0.6..., 1.9, 2} for each event.

– 9 –

Figure 5. The impact of factorization scale variations by a factor of 1/2 and 2, in increments of
0.1 (lighter colors are lower scales).

continuous, the adversary is trained using the mean squared error:

L[f, g] =�
X

µ

"0

@
X

i2LO t-chan

wi(µ) log(f(xi))�
X

i2LO W+jets

wi(µ) log(1� f(xi))

1

A

+ �

X

i2LO t-chan

wi (g(f(xi), yi)� µ)2
#
, (3.2)

where µ is the relative factorization scale. For each event, we can vary the factorization

scale through per-event weights wi and we use values µ 2 {0.5, 0.6..., 1.9, 2} for each event.

– 9 –

Figure 5. The impact of factorization scale variations by a factor of 1/2 and 2, in increments of
0.1 (lighter colors are lower scales).

continuous, the adversary is trained using the mean squared error:

L[f, g] =�
X

µ

"0

@
X

i2LO t-chan

wi(µ) log(f(xi))�
X

i2LO W+jets

wi(µ) log(1� f(xi))

1

A

+ �

X

i2LO t-chan

wi (g(f(xi), yi)� µ)2
#
, (3.2)

where µ is the relative factorization scale. For each event, we can vary the factorization

scale through per-event weights wi and we use values µ 2 {0.5, 0.6..., 1.9, 2} for each event.

– 9 –

NLO vs LO

Goal: Single top vs W+Jets
Decorrelation: Reduce difference in performance on scale variations at LO

Cross-check: Test uncertainty estimate from {scale variations at LO} using NLO

Factorisation scale variations going
from 1/2 to 2

Overconstraining NP

37

From W. Verkerke:

Dealing with over-constraining – introducing more NPs

•  Some systematic uncertainties are not captured well by one
nuisance parameter.

•  Written prescription often not clear on number of nuisance
parameters:

•  Or does “the JES uncertainty is 5% for all jets” mean 5 NPs?

Je
t

E
n
e
rg

y
S

c
a
le

 m
is

c
a
lib

ra
tio

n

Jet pT

i.e. JES miscalibration is not coherent across pT "
but still has 5% uncertainty for each pT bin

αJES1

αJES2

αJES3

αJES4
αJES5

5%
5%

5%
5%

5%

Dealing with over-constraining – introducing more NPs

•  Some systematic uncertainties are not captured well by one
nuisance parameter.

•  Written prescription often not clear on number of nuisance
parameters:

•  If you assume one NP – chances are that your physics Likelihood "
 will exploit this oversimplified JES model "
 to overconstrain JES for high pT jets!

Je
t

E
n
e
rg

y
S

c
a
le

 m
is

c
a
lib

ra
tio

n

Jet pT

αJES

i.e. JES miscalibration is coherent for all jets "
à You can calibrate high pT jets with a low pT jet sample

5%

Our modelling of NPs might be over-simplified

https://indico.nikhef.nl/event/1399/contributions/1907/attachments/828/998/nikhef_stats2018_lectures_day3.pdf

38

Nuisance Parameter InfrastructureNP infrastructure

Time to re-examine
some of the

underlying pieces

Are they up to the
task of the precision era?

Approximation
made by a grad
student in 2003

From Daniel Whiteson
Inspired by XKCD

https://xkcd.com/2347/

What processes populate the tail ?The tail

Make correction in UQ for EW processes
https://arxiv.org/abs/2210.15167

Examples

Tilman Plehn’s ‘reference process’ method

https://arxiv.org/abs/2210.15167

Surviving tailsRemaining tails

Large corrections to the
Loop-induced 2->1 process

Not easily extracted from LO
Would be interesting to study in NLO->NNLO

Large corrections loop-induced 2->1 process

An application in astrophysics

43

Application in Astrophysics: Full propagation of uncertainties

2

!
"#
#

$"%&'# ()*+,-./*)#&0-

1+
*#
#'
+*

!"#$%&'()
*+,&-.!/(0'1&

2($'134.!'&1
5&66.&4).,&)"$6

78$&'"34.
39.!'&'(.:7;!<

()*+,-

12
30
3)

#.4
.#

!/(0'1&.=.2>.'3.7;!.,(?1(66"34

:5@,<.'3.7;!.,(?1(66"34!/(0'1&.=.2>.'3.:5@,<.,(?1(66"34

FIG. 1: Overview of the regression task, which involves either inferring stellar summary quantities such as mass and
radius, which can then be used to deduce the equation of state as in earlier work [18–21] or inference of EOS directly

from stellar spectra, as is demonstrated in this study.

physics, often increasing the statistical power of di�cult-
to-collect data [23] while allowing robust handling of un-
certainties [24]. Where earlier neural networks were lim-
ited in size, computing progress especially in the form
of Graphical Processing Units (GPUs), has enabled the
deployment of larger and deeper networks that can han-
dle more complex and higher-dimensional data [25, 26],
allowing direct analysis of data without requiring dimen-
sional reduction, or other preprocessing steps, that can
often sacrifice useful information. The full power of these
techniques has not yet been brought to bear on many as-
trophysical tasks.

In the context of the inference of neutron star EOS,
recent work by Fujimoto et al. [18, 19] demonstrated the
ability of deep networks to regress the EOS directly from
a set of stellar mass-radius pairs, without the need to
extract the functional relationship between mass and ra-
dius. Their analysis used a toy model to describe the
uncertainties in mass and radius, assuming uncorrelated
Gaussian errors randomly drawn from ad-hoc priors.
Real measurements, of course, do not often obey these
simplifying assumptions, and show complex correlations
between mass and radius [27]. Related work [20] has
demonstrated similar regression, again assuming Gaus-
sian uncertainty on mass and radius values, but with
clever e↵orts to reduce dependence on EOS parameter-
ization. An alternative approach [21] uses both neural
networks and support vector machines to regress the EOS
from stellar radii and tidal deformations.

More realistic characterization of the uncertainties in
the mass-radius plane can be extracted using the state-

of-the-art tool xspec [28], which assumes a theoretical
model for the star and telescope response, allowing for
explicit calculation of the likelihood of telescope spectra
for various mass and radius values. The likelihood can
be used in the standard way to extract best-estimates
and uncertainty contours of any shape in the mass-radius
plane. However, these complex mass-radius likelihoods
cannot be trivially incorporated into the existing EOS
inference schemes, motivating the simplifying assump-
tions of uncorrelation normal distributions which can be
described by two width values. An additional concern
is that xspec’s contours rely on the simplifying assump-
tions of the theoretical model.

What has received less attention in the literature are
likelihood-free methods to infer the EOS directly from
the telescope spectra, without the intermediate stepping
stone of the mass-radius determination and the chal-
lenges of its representation. This would allow for the full
propagation of realistic uncertainties and the relaxation
of assumptions about the theoretical model.

In this paper, we present a technique of EOS infer-
ence which allows for the full propagation of the uncer-
tainties in the X-ray spectra, without making simplify-
ing assumptions about the shape of the contours in the
mass-radius plane. We proceed in three steps, begin-
ning from an approach similar to the state of the art but
with realistic uncertainty propagation, and moving to-
wards end-to-end infererence. In the first step, our neu-
ral network model infers the neutron star EOS from a
set of stellar masses and radii extracted from xspec, but
rather than making simplifying assumptions or extract-

SOTA made a single point estimate + assumed uncorrelated Gaussian uncertainties

Real uncertainties look quite different

16

FIG. 14: Estimation of the mass and radius of a
neutron star from the underlying stellar spectra, by
MR Net . Each pane represents one star, and shown
(green) are estimates for several independent values of
the nuisance parameters drawn from the associated
priors, and the mean value (red). Top two cases have

loose priors, bottom two have tight. The dashed ellipse,
whose widths are set to the standard deviation of the
mass and radius estimates, is a demonstration of the

inadequacy of a simple uncertainty model.

FIG. 15: Neural network regression of the EOS
parameters �1 and �2 of a set of 10 neutron stars from

from their masses and radii as estimated by
MR Net from each stars spectrum. Each pane

represents an example dataset of 10 simulated stars,
and shown (green) are EOS estimates for several

independent values of the stellar nuisance parameters
drawn from the associated priors, and the mean value

(red). Top two cases have loose priors, bottom two have
tight.

16

FIG. 14: Estimation of the mass and radius of a
neutron star from the underlying stellar spectra, by
MR Net . Each pane represents one star, and shown
(green) are estimates for several independent values of
the nuisance parameters drawn from the associated
priors, and the mean value (red). Top two cases have

loose priors, bottom two have tight. The dashed ellipse,
whose widths are set to the standard deviation of the
mass and radius estimates, is a demonstration of the

inadequacy of a simple uncertainty model.

FIG. 15: Neural network regression of the EOS
parameters �1 and �2 of a set of 10 neutron stars from

from their masses and radii as estimated by
MR Net from each stars spectrum. Each pane

represents an example dataset of 10 simulated stars,
and shown (green) are EOS estimates for several

independent values of the stellar nuisance parameters
drawn from the associated priors, and the mean value

(red). Top two cases have loose priors, bottom two have
tight.

JCAP.020P.0922: Delaney Farrell, Pierre Baldi, Jordan Ott, Aishik Ghosh, Andrew W. Steiner, Atharva Kavitkar, Lee Lindblom, Daniel Whiteson, Fridolin Weber

NPs

https://arxiv.org/abs/2209.02817

NPsNPsNPs

44

Learn forward process to access the likelihood

11

p(M,R|�1,�2) = �(h�[M]�R) p(M |�1,�2),

where h�[M] ! R is a function that gives the allowed value of R for a value of M , determined by the EOS parameters
�1, �2. The function h�[M] encodes all of the physics which translates the EOS into stellar mass and radius, and
is not available analytically or tractable numerically. It is possible, however, to train a neural network to learn this
function, as we do below. Assuming h�[M] is available, we choose to integrate over mass, as each mass is mapped
to a unique R; the same is not true for scanning in R, see Figure 6. The range of the mass integral is limited to the
physical region, from 1.2M� to 1.6� 3.25M�, depending on the radius, see Figure 6.

The delta function reduces the double integral in M �R to a single integral over mass:

p(s|�1,�2) =

Z
dM p(M |�1,�2) p(s|M,R = h�[M]),

which leads to an expression for the joint probability over the set of stars:

p(S|�1,�2) =
nstarsY

i

Z
dMi p(Mi|�1,�2) p(si|Mi, Ri = h�[Mi]).

The equation for p(s|M,R) now allows for the expression of a joint likelihood over the stars and the bins:

LS(�1,�2) = p(S|�1,�2) =
nstarsY

i

Z
dMi p(M |�1,�2)

Z
d⌫

nbinsY

j

Pois(N�

ij
, µij(Mi, Ri = h�[Mi], ⌫)p(⌫),

where we can replace each of the µij as we did above with f [M,R, ⌫]�t

LS(�1,�2) = p(S|�1,�2) =
nstarsY

i

Z
dMi p(M |�1,�2)

Z
d⌫

nbinsY

j

Pois(N�

ij
, µij = f [Mi, h�[Mi], ⌫]j�t)p(⌫). (3)

This expression can be evaluated, assuming one can learn a function h�[M] ! R. With the appropriate function,
the determination of the likelihood LS(�1,�2) is shown schematically in Fig 5.

Choose a Point
from EOS Space

Obtain the
Probability p(M, R | S)

Integrate p(M, R | S) to obtain
the Probability p(EOS | S)

λ1

λ2
Radius

M
as

s

Predicted
Observed

. . .

Ph
ot

on
s /

 b
in

Energy

Predicted
Observed

Ph
ot

on
s /

 b
in

Energy

Predicted
Observed

Energy

Ph
ot

on
s /

 b
in

Predicted
Observed

FIG. 5: Schematic diagram of determining the likelihood of EOS from stellar spectra.

13

FIG. 7: Scans of the likelihood for two example sets of stellar spectra s (left, right) versus EOS parameters �1 and
�2. Top demonstrates the ideal nuisance parameter (NP) conditions where the NPs are fixed to their true values.
For the same specra, center shows a more realistic “tight” scenario in which uncertainty has be integrated out, and

bottom shows a “loose” scenario in which the NPs are not well constrained by priors.

In the case of M ,R-estimation for an individual star, the performance of the ML-Likelihood method matches the
performance of xspec when the nuisance parameters are known. This is an important validation of the technique,
as the simulated samples are generated by xspec and so its internal likelihood estimation represents something
of an upper bound on possible performance. Though xspec can provide point estimates and other analysis, ML-
Likelihood in this case is valuable as a building block for further analysis, as xspec does not provide an e�cient
interface to its internal calculations. For example, in the cases where nuisance parameters weaken the inference,
ML-Likelihood is able to improve on xspec ’s performance by marginalizing over the stellar nuisance parameters.
Given access to the full likelihood, one could also choose to profile over the nuisance parameters. In addition, while
xspec ’s inference is linked to a particular theoretical model, ML-Likelihood can be trained on a variety or mixture
of models, providing a smooth interpolation between otherwise distinct conceptual approaches [49].

The M,R-likelihood estimation is a building block toward the the estimation of EOS parameters for sets of stars.
In this case, as well, the likelihood provides for reliable inference of the EOS parameters. The residuals in this case
again are narrower than the pure regression approach, nearly matching the performance of xspec in the true case,
and exceeding it in the realistic case where nuisance parameter uncertainty is important.

The neural networks developed for this work enable end-to-end, fast simulation of neutron star spectra for a range
of EOS parameters and nuisance parameters, including the intermediate step of generating plausible neutron star

True:

Tight:

Loose:

Nuisance
Priors:

EOS parameter
likelihoods:

Deploy with ONNX Runtime to compute likelihoods on-the-fly

arXiv:2305.07442: Delaney Farrell, Pierre Baldi, Jordan Ott, Aishik Ghosh, Andrew W. Steiner, Atharva Kavitkar, Lee Lindblom, Daniel Whiteson, Fridolin Weber

https://arxiv.org/abs/2305.07442

45

Forward process step-by-step

Learn EOS to M-R

12

FIG. 6: Relationship between neutron star mass and radius, as determined by equation of state parameters �1,�2.
Each color represents a single choice of EOS parameters, which determine a curve in the mass-radius plane.

Individual calculations as described in the text are shown (X), as compared with the output of a neural network
function h�[M] (solid line), which estimates the radius corresponding to an input value of M as determined by the

EOS parameters.

A. Learning the Model h�[M] for Stellar Radius

The approximate likelihood above requires learning a function h�[M] which estimates the stellar radius for a given
stellar mass as determined by the EOS parameters �1,�2. Note that one could equivalently estimate the mass from
the radius, but this has the additional complication of degenerate outputs for some radii, see Figure 6.

We model h�[M] with a network that is comprised of 10 hidden layers with 32 nodes and ReLU activations, and a
single node output layer with linear activation, trained with a Mean Squared Error (MSE) loss and an Adam optimizer.
Figure 6 demonstrates how the network h�[Mi] ! R performs for a few example values of the EOS parameters �.

B. Results

The two networks which model the missing functions f and h allow for an approximate evaluation of the likelihood,
Eq. 3 as a function of the EOS parameters. Figure 7 shows examples for two individual sets of simulated stars under
the three nuisance parameter scenarios.

To estimate the EOS parameters from a fixed set of stellar spectra, the likelihood is maximized via a course scan
over EOS parameter space followed by the use of an optimization algorithm for a more refined location of the optimal
EOS parameters. Each evaluation of the likelihood involves nested loops over the stars, an integral over possible
masses, and a loop over the spectral bins. Performance and comparison with benchmarks are shown in Fig 8 and
Table III. We note that the data used in evaluations are generated via xspec , not from the models f and h, allowing
for a test of the fidelity of the models. Experiments in which simulated spectra are generated using the models f and
g show equivalent performance, indicating that bias due to the estimation is negligible in this context.

VIII. DISCUSSION

The results above demonstrate that machine-learning-derived likelihoods are useful statistical tools, allowing for
traditional inference such as parameter estimation for quantities of interest (eg star M and R) as well as profiling
over nuisance parameters (eg stellar distances and temperatures).

Learn {M,R,NPs} to Spectrum

8

FIG. 2: Comparison of neutron star X-ray spectra predictions (dashed) from our network f [M,R, ⌫] described in the

text, as compared to training data generated by xspec (solid). Each pane shows the expected rate of photons (dN
�
1

dt
)

in Chandra per energy bin, for variations of the parameters of interest (mass M , radius R) as well as for variations
of the nuisance parameters ⌫ (nH , log(Te↵), distance).

VII. EQUATION OF STATE INFERENCE

The ultimate goal is to estimate the EOS parameters (�1,�2) given a set of spectra S = (s1, s2..., snstars). In principle,
this would be straightforward if one could evaluate p(S|�1,�2)p(�1,�2), which would allow for maximization to find
an estimate for �1,�2 for a fixed S.

We begin with the assumption that the EOS parameters have a uniform prior within their physical boundaries of

Intermediate steps remain interpretable physical quantities 9

FIG. 3: Scans of the likelihood for two example stellar spectra s (left, right) versus stellar mass and radius. Top
demonstrates the ideal nuisance parameter (NP) conditions where the NPs are fixed to their true values. For the
same specra, center shows a more realistic “tight” scenario in which uncertainty has be integrated out, and bottom

shows a “loose” scenario in which the NPs are not well constrained by priors.

�1 2 [4.75, 5.25],�2 2 �[1.85,�2.05], see Fig 3 of Ref [30]. The remaining step is evaluating p(S|�1,�2).
First we express the probability over the entire set S as the joint probability for each star si:

p(S|�1,�2) =
nstarsY

i

p(si|�1,�2).

The obstacle is that we do not know how to evaluate p(s|�1,�2), only p(s|M,R), which depends on stellar parameters
M and R. Linking these expressions is not trivial, as the EOS parameters �1,�2 do not uniquely determine stellar
parameters M and R, instead they only determine the M -R relation. That is, each point in (�1,�2) space specifies a
curve in M -R space. The solution is to integrate over the M -R curve allowed by the EOS parameters �1,�2. This
is most directly accomplished by expressing the integral over the mass-radius plane, constrained by a delta function
which traces out the M -R curve determined by the EOS parameters �1,�2:

Nuisance
Priors:

M-R likelihoods:

True:

Tight:

Loose:

arXiv:2305.07442: Delaney Farrell, Pierre Baldi, Jordan Ott, Aishik Ghosh, Andrew W. Steiner, Atharva Kavitkar, Lee Lindblom, Daniel Whiteson, Fridolin Weber

https://arxiv.org/abs/2305.07442

New ML tools

Mapping machine-learned physics into a human-readable space

5

Maximize
Decision
Ordering

BBN

Signal/Background Pairs

Same
Decision

Ordering?… …

…

… …

No

Yes

BBN

HLN

HL

HL

HL
HLN’

Black-Box
Guided
Search

FIG. 1. Schematic of the black-box guided search in Sec. II B. In each iteration of this strategy, the relative decision ordering of
signal/background pairs between the fixed black-box network (BBN, black triangle) and a trainable network of HL observables
(HLN, white triangle) is used to identify the subset (red box) in which pairs are di↵erently ordered. From a large space of HL
observables (circles), the one with the largest ADO in the misordered space (blue circle) is selected for the next iteration. The
schematic above corresponds to the n = 4 iteration. Note that the BBN is not retrained in each iteration, but the network of
HL observables is.

These steps are repeated until ADO[BBN,HLNn+1] gets
as close to 1 as desired.

Isolating the di↵erently-classified pairs in Eq. (8) is
similar in spirit to the boosting step of BDTs [69, 70].
This approach focuses attention only on the subspace
of pairs where the BBN disagrees with the current set
of HL observables, allowing us to identify new HL ob-
servables that make signal-background ordering decisions
most similar to the BBN in that subspace. It is worth
emphasizing that the ADO, or some other metric for net-
work decision similarity, is essential for this approach to
work.

Later in Sec. VC, we will compare this black-box
guided approach to a label guided approach. Instead
of using the ADO, the label guided approach uses the
AUC with respect to ground truth information. It is
straightforward to understand why the ADO is superior
to the AUC for guiding purposes. To the extent that the
BBN is well trained, it represents a good approximation
to the Neyman–Pearson optimal classifier. Achieving the
correct DO relative to the optimal classifier for every sig-
nal/background training pair is the best one could ever
hope to do. Therefore, if the black-box guiding strategy
is working correctly, then the subsets Xn will get smaller
and smaller until almost all signal/background pairs have
been correctly ordered relative to the BBN.

By contrast, the AUC captures DO relative to truth
labels. Unless the BBN is able to achieve AUC = 1, there
will inevitably be signal/background pairs that are incor-

rectly ordered even by the theoretically optimal classifier.
Instead of getting smaller and smaller, the subsets Xn

will stall at the set of signal/background pairs that can
never be ordered correctly. This in turn means that the
classification performance of HLNn will stall well below
the theoretical maximum in the label guided approach.
That is why we advocate for the selection of HL observ-
ables to be guided by the ADO, since then the classifi-
cation performance of the HLNn will eventually match
that of the BBN, as desired.
As with any “greedy algorithm”, our black-box guided

strategy cannot identify situations where two HL observ-
ables could be combined simultaneously to match the
BBN decision surfaces. This means that we might miss
sets of observables that are individually poor classifiers
but perform well jointly. If the goal were to just to max-
imize performance, this would be an undesirable feature.
In the context of mapping a black-box ML strategy to
a physically-interpretable space, though, we are indeed
looking for individual observables with high information
content relevant for classification, so this greedy strategy
is the one most likely to yield physical insight.

III. A CASE STUDY IN JET SUBSTRUCTURE

We now apply the technique introduced in Sec. II to
a specific case study involving jet classification at the
LHC. In this section, we review boosted W boson clas-

10

Rank EFP � Chrom # ADO[EFP,CNN]X6 AUC[EFP] ADO[6HL + EFP,CNN]Xall AUC[6HL + EFP]

1 2 1
2 3 0.6207 0.8031 0.9714 0.9528± 0.0003

2 2 1
2 3 0.6205 0.8203 0.9714 0.9524

3 0 – 1 0.6205 0.6737 0.9715 0.9525

4 2 1
2 3 0.6199 0.8301 0.9715 0.9527

5 2 1
2 3 0.6197 0.8290 0.9714 0.9527

6 2 1
2 3 0.6196 0.8251 0.9715 0.9522

7 0 1
2 2 0.6187 0.7511 0.9715 0.9526

8 2 1
2 3 0.6184 0.8257 0.9712 0.9527

9 2 1
2 3 0.6182 0.8090 0.9714 0.9527

10 2 1
2 3 0.6180 0.8314 0.9714 0.9526

60 0 1 2 0.6163 0.7194 0.9715 0.9525

341 �1 1
2 4 0.6142 0.6286 0.9714 0.9509

589 0 2 2 0.6109 0.7579 0.9714 0.9523

3106 �1 – 1 0.5891 0.5882 0.9714 0.9510

3519 1
2

1
2 2 0.5664 0.7698 0.9715 0.9524

3521 1
2 – 1 0.5663 0.7093 0.9714 0.9522

5531 1 2 1 0.5290 0.7454 0.9714 0.9507

5554 1 1
2 2 0.5279 0.8210 0.9713 0.9505

5610 2 – 1 0.5245 0.7117 0.9714 0.9507

5657 1 1 3 0.5224 0.8257 0.9712 0.9506

5793 1 1 2 0.5191 0.8640 0.9714 0.9505

6052 1 2 3 0.5153 0.8500 0.9716 0.9504

7438 1 2 2 0.5011 0.8835 0.9716 0.9506

TABLE II. A selection of EFPs, sorted by their similarity with the CNN, evaluated using ADO in the di↵erently-ordered
subspace X6. This corresponds to one step in the black-box guiding technique depicted in Fig. 1. After the top 10, EFPs are
shown if they correspond to a dot graph, appear in the C2/D2 observables from Eqs. (16) and (17), or have the highest ADO
among graphs with a given value of , �, or chromatic number.

particle directions, making it an e↵ective probe for devi-
ations from (c � 1)-prong substructure. The = 2 and
c = 3 EFPs found by our guided strategy therefore probe
IRC-unsafe deviations from 2-prong substructure (as one
might expect for boosted W tagging), with a particular
emphasis on the higher energy particles inside the jet.

By contrast, the only = 2 observable that has re-
ceived any significant attention in the jet substructure

literature is pD
T

[65, 66]. In the EFP language, pD
T

is a
c = 1 graph with no edges:

(=2) =
NX

a=1

z2a. (24)

Here, we see that pD
T

is only ranked 5610th by ADO.
Apparently, generic IRC-unsafe information is not, by it-

Faucett et al.

https://arxiv.org/pdf/2010.11998.pdf

48

Differentiable Programming: Optimise your final objective directly

Simpson et al.

qµ(x)

{s, b, bup, bdown}i

data (di) neural network binned summary stat.

hi = hist(f'(di))
test
statistic hypothesis

test

likelihood
model

ph(x|µ, ✓)

CLsupdate ' with @CLs
@'

backward pass

qµ(xobs)

f'(di)

Figure 1. The pipeline for neos. The dashed line indicating the backward pass involves
updating the weights ' of the neural network via gradient descent.

1.1. Related work
The most similar work to neos is INFERNO [2], which also targets the optimisation of a
summary statistic with respect to an inference-aware loss function. We compare our approach
to INFERNO below both qualitatively and quantitatively. Other attempts to incorporate
robustness to systematic uncertainties include: directly parameterising the neural network in
the relevant nuisance parameters that model systematic uncertainties [3], and including an
adversarial term in the loss that penalises dependence on these nuisance parameters [4].

2. Making HEP Analysis Di↵erentiable
Given a pre-filtered dataset, an analysis pipeline in HEP involves the following stages:

(i) Construction of a learnable 1-D summary statistic from data (with parameters ')

(ii) Binning of the summary statistic, e.g. through a histogram

(iii) Statistical model building, using the summary statistic as a template

(iv) Calculation of a test statistic, used to perform a frequentist hypothesis test of signal versus
background

(v) A p-value (or CLs
1 value) resulting from that hypothesis test, used to characterise the

sensitivity of the analysis

We can express this workflow as a direct function of the input dataset D and observable
parameters ':

CLs = f(D,') = (fsensitivity � ftest stat � flikelihood � fhistogram � fobservable)(D,'). (1)

In the common case where fobservable is a neural network, it seems possible to optimise this
composition end-to-end, i.e. train the network to directly optimise the analysis sensitivity. This
is exactly the task that neos sets out to accomplish, with a full workflow detailed in Figure 1.
To train this network by gradient descent, our choice of loss = CLs requires us to be able to
calculate @ CLs/@'. However, this is a stronger condition than it seems, and in fact necessitates
the di↵erentiablility of each individual analysis step via the chain rule applied to Equation 1.

Owing to the fact that neural networks are already di↵erentiable, the last term @fobservable/@'
isn’t an issue, but none of the rest of the steps are di↵erentiable by default. The following sections
detail solutions for calculating the gradient of each intermediate step.

1 CLs is a modification of the p-value that protects against rejecting the null hypothesis when the test is not
sensitive to the alternative hypothesis (e.g. through largely overlapping test statistic distributions).

Following Inferno [de Castro et al.]

https://arxiv.org/abs/2203.05570
https://arxiv.org/abs/1806.04743

