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introduction

Panorama of PDF representations:

Problem addressed here:

⇒ Determine an unbiased Hessian representation for MC PDFs.
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motivation

∙ Some advantages of each approach:

Monte Carlo approach:

∙ unbiased PDF parametrization
∙ no linear approximation to
propagate uncertainties

Hessian approach:

∙ PDF probability density is
Gaussian

∙ the use of PDF profiling

MC to Hessian conversion problem:

Avoid the definition of an intermediate functional form which
introduces bias in the PDF parametrization

Our Strategy:

use MC replicas themselves as the basis of the linear representation
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outline of the talk
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..the mc2hessian methodology



description of the method

Given a Monte Carlo prior set of PDFs

{f(k)α }k=1,...,Nrep , α = {g,u,d, s, . . .} ,

use a subset of replicas as parameters of linear expansion:

f(k)α ≈ f(k)H,α ≡ f(0)α +

Neig∑
i=1

a(k)i (η(i)α − f(0)α ) , k = 1, . . . ,Nrep
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description of the method

The methodology in 4 steps:

(a) We define the covariance matrix for the prior set
covpdf

ij,αβ
≡

Nrep
Nrep − 1

(⟨
f(k)α (xi,Q2

0) · f
(k)
β (xj,Q2

0)
⟩

rep
−

⟨
f(k)α (xi,Q2

0)
⟩

rep

⟨
f(k)β (xj,Q2

0)
⟩

rep

)

(b) Then we minimize the figure of merit

χ
2(k)
pdf ≡

Nx∑
i,j=1

Nf∑
α,β=1

([
f(k)H,α(xi,Q

2
0)− f(k)α (xi,Q2

0)
]
·
(

covpdf
)−1

ij,αβ
·
[
f(k)H,β(xj,Q

2
0)− f(k)β (xj,Q2

0)
])

∙ in a suitable sampling in x and flavors →
(
Nx,Nf

)
∙ at fixed Q2

0 → higher values by DGLAP evolution

Minimization strategy

∙ impose χ
2(k)
pdf → 0 for each replica of the prior (e.g. SVD)

∙ determination of the coefficients {a(k)i } for each original replica k
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description of the method

(c) We construct the covariance matrix of {a(k)i } coefficients

cov(a)
ij ≡ Nrep

Nrep − 1

(⟨
ai · aj

⟩
rep − ⟨ai⟩rep

⟨
aj
⟩

rep

)
, i, j = 1, . . . ,Neig

(d) We diagonalize the inverse of cov(a)
ij , the one-sigma uncertainty is

σPDF
H,α (x,Q2) =

√√√√√Neig∑
i=1

Neig∑
j=1

vij√
λi

(
η
(j)
α (x,Q2)− f(0)α (x,Q2)

)2

where vij is rotation matrix, and λi the set of eigenvalues.
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description of the method

The final symmetric Hessian eigenvectors

f̃(i)α (x,Q2) = f(0)α (x,Q2) +

Neig∑
j=1

vij√
λi

(
η(j)α (x,Q2)− f(0)α (x,Q2)

)

The one-sigma uncertainty band is then

σPDF
H,α (x,Q2) =

√√√√Neig∑
i=1

(̃
f(i)α (x,Q2)− f(0)α (x,Q2)

)2

To be compared to the standard deviation of the prior MC set:

σPDF
α (x,Q2) =

√⟨(
f(k)α (x,Q2)

)2
⟩

rep
−
⟨
f(k)α (x,Q2)

⟩2

rep
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..the mc2hessian numerics



numerical implementation

Practical implementation issues

1. the grid of points in x: 1-σ and the 68% confidence level intervals
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Up PDF, NNPDF3.0 NLO, Q2 =4 GeV2

1-σ uncertainty

68% c.l. uncertainty

2. the optimal basis of replicas, the optimal number of symmetric
eigenvectors for the Hessian representation
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numerical implementation

We define an estimator which measures the distance between the
prior MC and its Hessian representation:

ERFσ =
Nx∑
i=1

Nf∑
α=1

∣∣∣∣∣σPDF
H,α (xi,Q2

0)− σPDF
α (xi,Q2

0)

σPDF
α (xi,Q2

0)

∣∣∣∣∣
∙ We introduce an ϵ threshold for the exclusion of regions in x
where the Gaussian approximation is no reliable.

∙ We implement a Genetic Algorithm in function of ϵ and Neig which
minimizes the estimator.
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numerical implementation

∙ Surface: GA minimum for estimator in function of ϵ and Neig.
∙ Blue curve: surface minimum; black curve: estimator with large ϵ. 12



numerical implementation

Estimator: Random vs. GA basis
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Estimator for NNPDF3.0 NLO - 1000 replicas

Random basis, eps=25%

GA basis, eps=25%

∙ NNPDF3.0 NLO −→ Hessian representation with Neig = 120
∙ We use ϵ = 25% motivated by the previous slide.
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..validation and benchmarking



validation of nnpdf3.0 conversion

PDF comparison: MC vs. Hessian representations
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∙ Good agreement: differences in the one-sigma PDF uncertainty
bands of the order 5% at most between the two representations.
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validation of nnpdf3.0 conversion

Luminosities and Correlations:
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NNPDF3.0 NLO, Q2 =104  GeV2 , Gluon-Up correlation
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∙ Reasonable agreement: small differences due to the information
loss when moving from the MC to the Hessian representation.
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validation of nnpdf3.0 conversion

Full correlations matrix:

∙ Good agreement: small differences due to the information loss
when moving from the MC to the Hessian representation.
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..self-closure test



mmht2014 nlo self-closure test

Starting from the original Hessian MMHT14 NLO set:

1. Construct its MC representation
(Watt & Thorne ’12)

2. Run the mc2hessian algorithm
In this case, the estimator
minimum is obtained with
12 symmetric eigenvectors.
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Estimator for MMHT2014 NLO - 1000 replicas

Random basis, eps=25%

GA basis, eps=25%

Self-closure Test Output:

mc2hessian successful ⇒ original and the new Hessian
representations are close to each other
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mmht2014 nlo self-closure test

PDF comparison: Original MMHT2014 vs. Hessian from MC
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∙ Agreements better than 5% of the uncertainty between the two Hessian
representations.

∙ The mc2hessian is able to compress information of the native Hessian
representations, reducing the total number of eigenvectors. 20



..phenomenology



lhc phenomenology

LHC inclusive cross-sections @ 13 TeV

Ratio to NNPDF3.0 Monte Carlo
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∙ Good agreement for LHC inclusive cross-sections, discrepancies
below 10%.
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lhc phenomenology

LHC differential distributions @ 7 TeV for NNPDF3.0 NLO
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∙ Very good agreement for a large number of differential
distributions at the LHC 7 TeV, differences always below 10%.
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..delivery



summary & delivery

∙ The mc2hessian program is public available at

github.com/scarrazza/mc2hessian
∙ Further optimizations in progress before final release.
∙ NNPDF3.0 Hessian version available in LHAPDF6 soon:

∙ NNPDF30_nlo_as_0118_hessian
∙ NNPDF30_nnlo_as_0118_hessian

∙ Any other MC set can be converted using directly the public code.
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Questions?
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