# mc<sup>2</sup>hessian

### An unbiased Hessian representation for Monte Carlo PDFs

Stefano Carrazza in collaboration with S. Forte, Z. Kassabov, J.I. Latorre and J. Rojo PDF4LHC, April 13, 2015, CERN







#### Panorama of PDF representations:



#### Problem addressed here:

 $\Rightarrow$  Determine an **unbiased Hessian representation** for **MC** PDFs.



· Some **advantages** of each approach:

#### Monte Carlo approach:

- $\cdot$  unbiased PDF parametrization
- no linear approximation to propagate uncertainties

#### Hessian approach:

- PDF probability density is Gaussian
- $\cdot$  the use of PDF profiling



· Some **advantages** of each approach:

#### Monte Carlo approach:

- unbiased PDF parametrization
- no linear approximation to propagate uncertainties

#### Hessian approach:

- PDF probability density is Gaussian
- $\cdot$  the use of PDF profiling

#### MC to Hessian conversion problem:

Avoid the definition of an **intermediate** functional form which introduces **bias** in the **PDF parametrization** 



· Some **advantages** of each approach:

#### Monte Carlo approach:

- $\cdot$  unbiased PDF parametrization
- no linear approximation to propagate uncertainties

#### Hessian approach:

- PDF probability density is Gaussian
- $\cdot$  the use of PDF profiling

#### MC to Hessian conversion problem:

Avoid the definition of an **intermediate** functional form which introduces **bias** in the **PDF parametrization** 

#### Our Strategy:

use MC replicas themselves as the basis of the linear representation







### THE mc2hessian METHODOLOGY

$$\{f_{\alpha}^{(k)}\}_{k=1,\ldots,N_{\mathrm{rep}}}, \quad \alpha = \{g, u, d, s, \ldots\},\$$

$$f_{\alpha}^{(k)} \approx f_{H,\alpha}^{(k)} \equiv f_{\alpha}^{(0)} + \sum_{i=1}^{N_{eig}} a_i^{(k)} (\eta_{\alpha}^{(i)} - f_{\alpha}^{(0)}), \quad k = 1, \dots, N_{rep}$$



$$\{f_{\alpha}^{(k)}\}_{k=1,\ldots,N_{\mathrm{rep}}}, \quad \alpha = \{g, u, d, s, \ldots\},\$$

use a subset of replicas as parameters of linear expansion:

$$f_{\alpha}^{(k)} \approx f_{H,\alpha}^{(k)} \equiv f_{\alpha}^{(0)} + \sum_{i=1}^{N_{eig}} a_i^{(k)} (\eta_{\alpha}^{(i)} - f_{\alpha}^{(0)}), \quad k = 1, \dots, N_{rep}$$

 $\cdot$  approximate each replica of the original MC ensemble  $f_{lpha}^{(k)}$ 



$$\{f_{\alpha}^{(k)}\}_{k=1,\ldots,N_{\mathrm{rep}}}, \quad \alpha = \{g, u, d, s, \ldots\},\$$

$$f_{\alpha}^{(k)} \approx f_{H,\alpha}^{(k)} \equiv f_{\alpha}^{(0)} + \sum_{i=1}^{N_{eig}} a_i^{(k)} (\eta_{\alpha}^{(i)} - f_{\alpha}^{(0)}), \quad k = 1, \dots, N_{rep}$$

- $\cdot$  approximate each replica of the original MC ensemble  $f^{(k)}_{lpha}$
- by the linear combination  $f_{H,\alpha}^{(k)}$



$$\{f_{\alpha}^{(k)}\}_{k=1,\ldots,N_{\mathrm{rep}}}, \quad \alpha = \{g, u, d, s, \ldots\},\$$

$$f_{\alpha}^{(k)} \approx f_{H,\alpha}^{(k)} \equiv f_{\alpha}^{(0)} + \sum_{i=1}^{N_{\text{eig}}} a_{i}^{(k)} (\eta_{\alpha}^{(i)} - f_{\alpha}^{(0)}), \quad k = 1, \dots, N_{\text{rep}}$$

- $\cdot$  approximate each replica of the original MC ensemble  $f^{(k)}_{lpha}$
- by the linear combination  $f_{H,\alpha}^{(k)}$
- with coefficients  $a_i^{(k)}$



$$\{f_{\alpha}^{(k)}\}_{k=1,\ldots,N_{\mathrm{rep}}}, \quad \alpha = \{g, u, d, s, \ldots\},\$$

$$f_{\alpha}^{(k)} \approx f_{H,\alpha}^{(k)} \equiv f_{\alpha}^{(0)} + \sum_{i=1}^{N_{eig}} a_i^{(k)} (\eta_{\alpha}^{(i)} - f_{\alpha}^{(0)}), \quad k = 1, \dots, N_{rep}$$

- $\cdot$  approximate each replica of the original MC ensemble  $f^{(k)}_{lpha}$
- by the linear combination  $f_{H,\alpha}^{(k)}$
- with coefficients  $a_i^{(k)}$
- $\cdot$  of deviations from the central value  $f^{(0)}_{lpha}$



$$\{f_{\alpha}^{(k)}\}_{k=1,\ldots,N_{\mathrm{rep}}}, \quad \alpha = \{g, u, d, s, \ldots\},\$$

$$f_{\alpha}^{(k)} \approx f_{H,\alpha}^{(k)} \equiv f_{\alpha}^{(0)} + \sum_{i=1}^{N_{eig}} a_i^{(k)} (\eta_{\alpha}^{(i)} - f_{\alpha}^{(0)}), \quad k = 1, \dots, N_{rep}$$

- $\cdot$  approximate each replica of the original MC ensemble  $f^{(k)}_{lpha}$
- by the linear combination  $f_{H,\alpha}^{(k)}$
- with coefficients  $a_i^{(k)}$
- $\cdot$  of deviations from the central value  $f^{(0)}_{lpha}$
- expanded in the basis of a subset of replicas  $\{\eta_{\alpha}^{(l)}\}_{i=1,\ldots,N_{eig}} \subset \{f_{\alpha}^{(k)}\}$



$$\{f_{\alpha}^{(k)}\}_{k=1,\ldots,N_{\mathrm{rep}}}, \quad \alpha = \{g, u, d, s, \ldots\},\$$

$$f_{\alpha}^{(k)} \approx f_{H,\alpha}^{(k)} \equiv f_{\alpha}^{(0)} + \sum_{i=1}^{N_{eig}} a_i^{(k)} (\eta_{\alpha}^{(i)} - f_{\alpha}^{(0)}), \quad k = 1, \dots, N_{rep}$$

- $\cdot$  approximate each replica of the original MC ensemble  $f^{(k)}_{lpha}$
- by the linear combination  $f_{H,\alpha}^{(k)}$
- with coefficients  $a_i^{(k)}$
- $\cdot$  of deviations from the central value  $f^{(0)}_{lpha}$
- · expanded in the basis of a subset of replicas  $\{\eta_{\alpha}^{(i)}\}_{i=1,\dots,N_{eig}} \subset \{f_{\alpha}^{(k)}\}$



#### The methodology in 4 steps:

## (a) We define the **covariance matrix** for the prior set $\operatorname{cov}_{ij,\alpha\beta}^{\mathrm{pdf}} \equiv \frac{N_{\mathrm{rep}}}{N_{\mathrm{rep}}-1} \left( \left\langle f_{\alpha}^{(k)}(x_{i},Q_{0}^{2}) \cdot f_{\beta}^{(k)}(x_{j},Q_{0}^{2}) \right\rangle_{\mathrm{rep}} - \left\langle f_{\alpha}^{(k)}(x_{i},Q_{0}^{2}) \right\rangle_{\mathrm{rep}} \left\langle f_{\beta}^{(k)}(x_{j},Q_{0}^{2}) \right\rangle_{\mathrm{rep}} \right)$

#### The methodology in 4 steps:

## (a) We define the **covariance matrix** for the prior set $\operatorname{cov}_{ij,\alpha\beta}^{\text{pdf}} \equiv \frac{N_{\text{rep}}}{N_{\text{rep}} - 1} \left( \left\langle f_{\alpha}^{(k)}(x_i, Q_0^2) \cdot f_{\beta}^{(k)}(x_j, Q_0^2) \right\rangle_{\text{rep}} - \left\langle f_{\alpha}^{(k)}(x_i, Q_0^2) \right\rangle_{\text{rep}} \left\langle f_{\beta}^{(k)}(x_j, Q_0^2) \right\rangle_{\text{rep}} \right)$

(b) Then we minimize the figure of merit

$$\chi_{\rm pdf}^{2(k)} \equiv \sum_{i,j=1}^{N_x} \sum_{\alpha,\beta=1}^{N_f} \left( \left[ f_{H,\alpha}^{(k)}(x_i, Q_0^2) - f_{\alpha}^{(k)}(x_i, Q_0^2) \right] \cdot \left( \operatorname{cov}^{\rm pdf} \right)_{ij,\alpha\beta}^{-1} \cdot \left[ f_{H,\beta}^{(k)}(x_j, Q_0^2) - f_{\beta}^{(k)}(x_j, Q_0^2) \right] \right)$$

- · in a suitable sampling in x and flavors  $\rightarrow (N_x, N_f)$
- $\cdot$  at fixed  $Q_0^2 \rightarrow$  higher values by DGLAP evolution



#### The methodology in 4 steps:

## (a) We define the **covariance matrix** for the prior set $\operatorname{cov}_{ij,\alpha\beta}^{\mathrm{pdf}} \equiv \frac{N_{\mathrm{rep}}}{N_{\mathrm{rep}} - 1} \left( \left\langle f_{\alpha}^{(k)}(x_i, Q_0^2) \cdot f_{\beta}^{(k)}(x_j, Q_0^2) \right\rangle_{\mathrm{rep}} - \left\langle f_{\alpha}^{(k)}(x_i, Q_0^2) \right\rangle_{\mathrm{rep}} \left\langle f_{\beta}^{(k)}(x_j, Q_0^2) \right\rangle_{\mathrm{rep}} \right)$

(b) Then we minimize the figure of merit

$$\chi_{\rm pdf}^{2(k)} \equiv \sum_{i,j=1}^{N_x} \sum_{\alpha,\beta=1}^{N_f} \left( \left[ f_{H,\alpha}^{(k)}(x_i, Q_0^2) - f_{\alpha}^{(k)}(x_i, Q_0^2) \right] \cdot \left( \operatorname{cov}^{\rm pdf} \right)_{ij,\alpha\beta}^{-1} \cdot \left[ f_{H,\beta}^{(k)}(x_j, Q_0^2) - f_{\beta}^{(k)}(x_j, Q_0^2) \right] \right)$$

- · in a suitable sampling in x and flavors  $\rightarrow (N_x, N_f)$
- $\cdot\,$  at fixed  $Q_0^2 \rightarrow$  higher values by DGLAP evolution

#### Minimization strategy

- $\cdot$  impose  $\chi^{2(k)}_{
  m pdf} 
  ightarrow$  0 for each replica of the prior (e.g. SVD)
- · determination of the coefficients  $\{a_i^{(k)}\}$  for each original replica k



(c) We construct the covariance matrix of  $\{a_i^{(k)}\}$  coefficients

$$\operatorname{cov}_{ij}^{(a)} \equiv \frac{N_{\operatorname{rep}}}{N_{\operatorname{rep}} - 1} \left( \left\langle a_i \cdot a_j \right\rangle_{\operatorname{rep}} - \left\langle a_i \right\rangle_{\operatorname{rep}} \left\langle a_j \right\rangle_{\operatorname{rep}} \right), \quad i, j = 1, \dots, N_{\operatorname{eig}}$$

(d) We diagonalize the inverse of  $\mathrm{cov}_{ij}^{(\mathrm{a})}$  , the one-sigma uncertainty is

$$\sigma_{H,\alpha}^{\text{PDF}}(x,Q^2) = \sqrt{\sum_{i=1}^{N_{\text{eig}}} \left[\sum_{j=1}^{N_{\text{eig}}} \frac{V_{ij}}{\sqrt{\lambda_i}} \left(\eta_{\alpha}^{(j)}(x,Q^2) - f_{\alpha}^{(0)}(x,Q^2)\right)\right]^2}$$

where  $v_{ij}$  is rotation matrix, and  $\lambda_i$  the set of eigenvalues.

#### The final symmetric Hessian eigenvectors

$$\widetilde{f}_{\alpha}^{(i)}(x,Q^2) = f_{\alpha}^{(0)}(x,Q^2) + \sum_{j=1}^{N_{\text{eig}}} \frac{V_{ij}}{\sqrt{\lambda_i}} \left( \eta_{\alpha}^{(j)}(x,Q^2) - f_{\alpha}^{(0)}(x,Q^2) \right)$$

#### The one-sigma uncertainty band is then

$$\sigma_{H,\alpha}^{\text{PDF}}(x,Q^2) = \sqrt{\sum_{i=1}^{N_{eig}} \left(\tilde{f}_{\alpha}^{(i)}(x,Q^2) - f_{\alpha}^{(0)}(x,Q^2)\right)^2}$$



#### The final symmetric Hessian eigenvectors

$$\widetilde{f}_{\alpha}^{(i)}(x,Q^2) = f_{\alpha}^{(0)}(x,Q^2) + \sum_{j=1}^{N_{\text{eig}}} \frac{V_{ij}}{\sqrt{\lambda_i}} \left( \eta_{\alpha}^{(j)}(x,Q^2) - f_{\alpha}^{(0)}(x,Q^2) \right)$$

#### The one-sigma uncertainty band is then

$$\sigma_{H,\alpha}^{\text{PDF}}(x,Q^2) = \sqrt{\sum_{i=1}^{N_{eig}} \left(\tilde{f}_{\alpha}^{(i)}(x,Q^2) - f_{\alpha}^{(0)}(x,Q^2)\right)^2}$$

To be compared to the standard deviation of the prior MC set:

$$\sigma_{\alpha}^{\rm PDF}(x,Q^2) = \sqrt{\left\langle \left( f_{\alpha}^{(k)}(x,Q^2) \right)^2 \right\rangle_{\rm rep} - \left\langle f_{\alpha}^{(k)}(x,Q^2) \right\rangle_{\rm rep}^2}$$



## THE mc2hessian NUMERICS

#### Practical implementation issues

1. the grid of points in x: 1- $\sigma$  and the 68% confidence level intervals



2. the **optimal basis** of replicas, the **optimal number** of symmetric eigenvectors for the Hessian representation



We define an **estimator** which measures the distance between the prior MC and its Hessian representation:

$$\mathrm{ERF}_{\sigma} = \sum_{i=1}^{N_x} \sum_{\alpha=1}^{N_f} \left| \frac{\sigma_{H,\alpha}^{\mathrm{PDF}}(x_i, Q_0^2) - \sigma_{\alpha}^{\mathrm{PDF}}(x_i, Q_0^2)}{\sigma_{\alpha}^{\mathrm{PDF}}(x_i, Q_0^2)} \right|$$

- We **introduce** an  $\epsilon$  threshold for the **exclusion** of regions in x where the **Gaussian approximation is no reliable**.
- We **implement** a **Genetic Algorithm** in function of  $\epsilon$  and  $N_{eig}$  which **minimizes** the **estimator**.

#### NUMERICAL IMPLEMENTATION



- · Surface: GA minimum for estimator in function of  $\epsilon$  and  $N_{\rm eig}$ .
- Blue curve: surface minimum; black curve: estimator with large  $\epsilon$ .



12

#### Estimator: Random vs. GA basis



- $\cdot$  NNPDF3.0 NLO  $\longrightarrow$  Hessian representation with  $\mathit{N}_{\rm eig}=$  120
- $\cdot$  We use  $\epsilon = 25\%$  motivated by the previous slide.



#### VALIDATION AND BENCHMARKING

#### PDF comparison: MC vs. Hessian representations



• **Good agreement:** differences in the one-sigma PDF uncertainty bands of the order 5% at most between the two representations.



#### Luminosities and Correlations:



• **Reasonable agreement:** small differences due to the information loss when moving from the MC to the Hessian representation.



#### Full correlations matrix:



• **Good agreement:** small differences due to the information loss when moving from the MC to the Hessian representation.

#### SELF-CLOSURE TEST

#### Starting from the original Hessian MMHT14 NLO set:

- 1. Construct its **MC representation** (Watt & Thorne '12)
- 2. Run the **mc2hessian** algorithm

In this case, the estimator minimum is obtained with **12 symmetric eigenvectors**.



#### Self-closure Test Output:

mc2hessian successful  $\Rightarrow$  original and the new Hessian representations are close to each other



#### PDF comparison: Original MMHT2014 vs. Hessian from MC



• Agreements **better than 5%** of the uncertainty between the two Hessian representations.



20

• The mc2hessian is able to compress information of the native Hessian representations, reducing the total number of eigenvectors.

#### PHENOMENOLOGY

#### LHC inclusive cross-sections @ 13 TeV



• **Good agreement** for LHC inclusive cross-sections, discrepancies below 10%.



#### LHC differential distributions @ 7 TeV for NNPDF3.0 NLO



• Very good agreement for a large number of differential distributions at the LHC 7 TeV, differences always below 10%.



#### DELIVERY

- The mc2hessian program is public available at github.com/scarrazza/mc2hessian
- · Further **optimizations** in progress before final release.
- · NNPDF3.0 Hessian version available in LHAPDF6 soon:
  - NNPDF30\_nlo\_as\_0118\_hessian
  - NNPDF30\_nnlo\_as\_0118\_hessian
- $\cdot\,$  Any other MC set can be converted using directly the public code.

### QUESTIONS?

