$m c^{2} h e s s i a n$

An unbiased Hessian representation for Monte Carlo PDFs

Stefano Carrazza

in collaboration with S. Forte, Z. Kassabov, J.I. Latorre and J. Rojo
PDF4LHC, April 13, 2015, CERN

INTRODUCTION

Panorama of PDF representations:

Problem addressed here:

\Rightarrow Determine an unbiased Hessian representation for MC PDFs.

MOTIVATION

- Some advantages of each approach:

Monte Carlo approach:

- unbiased PDF parametrization
- no linear approximation to propagate uncertainties

Hessian approach:

- PDF probability density is Gaussian
- the use of PDF profiling

MOTIVATION

- Some advantages of each approach:

Monte Carlo approach:

- unbiased PDF parametrization
- no linear approximation to propagate uncertainties

Hessian approach:

- PDF probability density is Gaussian
- the use of PDF profiling

MC to Hessian conversion problem:
Avoid the definition of an intermediate functional form which introduces bias in the PDF parametrization

MOTIVATION

- Some advantages of each approach:

Monte Carlo approach:

- unbiased PDF parametrization
- no linear approximation to propagate uncertainties

Hessian approach:

- PDF probability density is Gaussian
- the use of PDF profiling

MC to Hessian conversion problem:
Avoid the definition of an intermediate functional form which introduces bias in the PDF parametrization

Our Strategy:
use MC replicas themselves as the basis of the linear representation

OUTLINE OF THE TALK

THE mc2hessian methodology

DESCRIPTION OF THE METHOD

Given a Monte Carlo prior set of PDFs

$$
\left\{f_{\alpha}^{(k)}\right\}_{k=1, \ldots, N_{\text {rep }}}, \quad \alpha=\{g, u, d, s, \ldots\},
$$

use a subset of replicas as parameters of linear expansion:

$$
f_{\alpha}^{(k)} \approx f_{H, \alpha}^{(k)} \equiv f_{\alpha}^{(0)}+\sum_{i=1}^{N_{\text {eig }}} a_{i}^{(k)}\left(\eta_{\alpha}^{(i)}-f_{\alpha}^{(0)}\right), \quad k=1, \ldots, N_{\text {rep }}
$$

DESCRIPTION OF THE METHOD

Given a Monte Carlo prior set of PDFs

$$
\left\{f_{\alpha}^{(k)}\right\}_{k=1, \ldots, N_{\text {rep }}}, \quad \alpha=\{g, u, d, s, \ldots\},
$$

use a subset of replicas as parameters of linear expansion:

$$
f_{\alpha}^{(k)} \approx f_{H, \alpha}^{(k)} \equiv f_{\alpha}^{(0)}+\sum_{i=1}^{N_{\text {eig }}} a_{i}^{(k)}\left(\eta_{\alpha}^{(i)}-f_{\alpha}^{(0)}\right), \quad k=1, \ldots, N_{\text {rep }}
$$

approximate each replica of the original MC ensemble $f_{\alpha}^{(k)}$

DESCRIPTION OF THE METHOD

Given a Monte Carlo prior set of PDFs

$$
\left\{f_{\alpha}^{(k)}\right\}_{k=1, \ldots, N_{\text {rep }}}, \quad \alpha=\{g, u, d, s, \ldots\}
$$

use a subset of replicas as parameters of linear expansion:

$$
f_{\alpha}^{(k)} \approx f_{H, \alpha}^{(k)} \equiv f_{\alpha}^{(0)}+\sum_{i=1}^{N_{\text {eig }}} a_{i}^{(k)}\left(\eta_{\alpha}^{(i)}-f_{\alpha}^{(0)}\right), \quad k=1, \ldots, N_{\text {rep }}
$$

- approximate each replica of the original MC ensemble $f_{\alpha}^{(k)}$
by the linear combination $f_{H, \alpha}^{(k)}$

DESCRIPTION OF THE METHOD

Given a Monte Carlo prior set of PDFs

$$
\left\{f_{\alpha}^{(k)}\right\}_{k=1, \ldots, N_{\text {rep }}}, \quad \alpha=\{g, u, d, s, \ldots\},
$$

use a subset of replicas as parameters of linear expansion:

$$
f_{\alpha}^{(k)} \approx f_{H, \alpha}^{(k)} \equiv f_{\alpha}^{(0)}+\sum_{i=1}^{N_{\text {eig }}} a_{i}^{(k)}\left(\eta_{\alpha}^{(i)}-f_{\alpha}^{(0)}\right), \quad k=1, \ldots, N_{\text {rep }}
$$

- approximate each replica of the original MC ensemble $f_{\alpha}^{(k)}$
- by the linear combination $f_{H, \alpha}^{(k)}$
with coefficients $a_{i}^{(k)}$

DESCRIPTION OF THE METHOD

Given a Monte Carlo prior set of PDFs

$$
\left\{f_{\alpha}^{(k)}\right\}_{k=1, \ldots, N_{\text {rep }}}, \quad \alpha=\{g, u, d, s, \ldots\},
$$

use a subset of replicas as parameters of linear expansion:

$$
f_{\alpha}^{(k)} \approx f_{H, \alpha}^{(k)} \equiv f_{\alpha}^{(0)}+\sum_{i=1}^{N_{\text {eig }}} a_{i}^{(k)}\left(\eta_{\alpha}^{(i)}-f_{\alpha}^{(0)}\right), \quad k=1, \ldots, N_{\text {rep }}
$$

- approximate each replica of the original MC ensemble $f_{\alpha}^{(k)}$
- by the linear combination $f_{H, \alpha}^{(k)}$
- with coefficients $a_{i}^{(k)}$
- of deviations from the central value $f_{\alpha}^{(0)}$

DESCRIPTION OF THE METHOD

Given a Monte Carlo prior set of PDFs

$$
\left\{f_{\alpha}^{(k)}\right\}_{k=1, \ldots, N_{\text {rep }}}, \quad \alpha=\{g, u, d, s, \ldots\}
$$

use a subset of replicas as parameters of linear expansion:

$$
f_{\alpha}^{(k)} \approx f_{H, \alpha}^{(k)} \equiv f_{\alpha}^{(0)}+\sum_{i=1}^{N_{\text {eig }}} a_{i}^{(k)}\left(\eta_{\alpha}^{(i)}-f_{\alpha}^{(0)}\right), \quad k=1, \ldots, N_{\text {rep }}
$$

- approximate each replica of the original MC ensemble $f_{\alpha}^{(k)}$
- by the linear combination $f_{H, \alpha}^{(k)}$
- with coefficients $a_{i}^{(k)}$
- of deviations from the central value $f_{\alpha}^{(0)}$
- expanded in the basis of a subset of replicas $\left\{\eta_{\alpha}^{(i)}\right\}_{i=1, \ldots, N_{\text {eig }}} \subset\left\{f_{\alpha}^{(k)}\right\}$

DESCRIPTION OF THE METHOD

Given a Monte Carlo prior set of PDFs

$$
\left\{f_{\alpha}^{(k)}\right\}_{k=1, \ldots, N_{\text {rep }}}, \quad \alpha=\{g, u, d, s, \ldots\}
$$

use a subset of replicas as parameters of linear expansion:

$$
f_{\alpha}^{(k)} \approx f_{H, \alpha}^{(k)} \equiv f_{\alpha}^{(0)}+\sum_{i=1}^{N_{\text {eig }}} a_{i}^{(k)}\left(\eta_{\alpha}^{(i)}-f_{\alpha}^{(0)}\right), \quad k=1, \ldots, N_{\text {rep }}
$$

- approximate each replica of the original MC ensemble $f_{\alpha}^{(k)}$
- by the linear combination $f_{H, \alpha}^{(k)}$
- with coefficients $a_{i}^{(k)}$
- of deviations from the central value $f_{\alpha}^{(0)}$
- expanded in the basis of a subset of replicas $\left\{\eta_{\alpha}^{(i)}\right\}_{i=1, \ldots, N_{\text {eig }}} \subset\left\{f_{\alpha}^{(k)}\right\}$

DESCRIPTION OF THE METHOD

The methodology in 4 steps:
(a) We define the covariance matrix for the prior set
$\operatorname{cov}_{i, \alpha \beta}^{\mathrm{pdf}} \equiv \frac{N_{\text {rep }}}{N_{\text {rep }}-1}\left(\left\langle f_{\alpha}^{(k)}\left(x_{i}, Q_{0}^{2}\right) \cdot f_{\beta}^{(k)}\left(x_{j}, Q_{0}^{2}\right)\right\rangle_{\text {rep }}-\left\langle f_{\alpha}^{(k)}\left(x_{i}, Q_{0}^{2}\right)\right\rangle_{\text {rep }}\left\langle f_{\beta}^{(k)}\left(x_{j}, Q_{0}^{2}\right)\right\rangle_{\text {rep }}\right)$

DESCRIPTION OF THE METHOD

The methodology in 4 steps:
(a) We define the covariance matrix for the prior set
$\operatorname{cov}_{i, \alpha \beta}^{\text {pdf }} \equiv \frac{N_{\text {rep }}}{N_{\text {rep }}-1}\left(\left\langle f_{\alpha}^{(k)}\left(x_{i}, Q_{0}^{2}\right) \cdot f_{\beta}^{(k)}\left(x_{j}, Q_{0}^{2}\right)\right\rangle_{\text {rep }}-\left\langle f_{\alpha}^{(k)}\left(x_{i}, Q_{0}^{2}\right)\right\rangle_{\text {rep }}\left\langle f_{\beta}^{(k)}\left(x_{j}, Q_{0}^{2}\right)\right\rangle_{\text {rep }}\right)$
(b) Then we minimize the figure of merit

$$
\chi_{\mathrm{pdf}}^{2(k)} \equiv \sum_{i, j=1}^{N_{x}} \sum_{\alpha, \beta=1}^{N_{f}}\left(\left[f_{H, \alpha}^{(k)}\left(x_{i}, Q_{0}^{2}\right)-f_{\alpha}^{(k)}\left(x_{i}, Q_{0}^{2}\right)\right] \cdot\left(\operatorname{cov}^{\mathrm{pdf}}\right)_{i j, \alpha \beta}^{-1} \cdot\left[f_{H, \beta}^{(k)}\left(x_{j}, Q_{0}^{2}\right)-f_{\beta}^{(k)}\left(x_{j}, Q_{0}^{2}\right)\right]\right)
$$

- in a suitable sampling in x and flavors $\rightarrow\left(N_{x}, N_{f}\right)$
- at fixed $Q_{0}^{2} \rightarrow$ higher values by DGLAP evolution

DESCRIPTION OF THE METHOD

The methodology in 4 steps:
(a) We define the covariance matrix for the prior set
$\operatorname{cov}_{i j, \alpha \beta}^{\text {pdf }} \equiv \frac{N_{\text {rep }}}{N_{\text {rep }}-1}\left(\left\langle f_{\alpha}^{(k)}\left(x_{i}, Q_{0}^{2}\right) \cdot f_{\beta}^{(k)}\left(x_{j}, Q_{0}^{2}\right)\right\rangle_{\text {rep }}-\left\langle f_{\alpha}^{(k)}\left(x_{i}, Q_{0}^{2}\right)\right\rangle_{\text {rep }}\left\langle f_{\beta}^{(k)}\left(x_{j}, Q_{0}^{2}\right)\right\rangle_{\text {rep }}\right)$
(b) Then we minimize the figure of merit
$\chi_{\mathrm{pdf}}^{2(k)} \equiv \sum_{i, j=1}^{N_{x}} \sum_{\alpha, \beta=1}^{N_{f}}\left(\left[f_{H, \alpha}^{(k)}\left(x_{i}, Q_{0}^{2}\right)-f_{\alpha}^{(k)}\left(x_{i}, Q_{0}^{2}\right)\right] \cdot\left(\operatorname{cov}^{\mathrm{pdf}}\right)_{i j, \alpha \beta}^{-1} \cdot\left[f_{H, \beta}^{(k)}\left(x_{j}, Q_{0}^{2}\right)-f_{\beta}^{(k)}\left(x_{j}, Q_{0}^{2}\right)\right]\right)$

- in a suitable sampling in x and flavors $\rightarrow\left(N_{x}, N_{f}\right)$
- at fixed $Q_{0}^{2} \rightarrow$ higher values by DGLAP evolution

Minimization strategy

- impose $\chi_{\mathrm{pdf}}^{2(k)} \rightarrow 0$ for each replica of the prior (e.g. SVD)
- determination of the coefficients $\left\{a_{i}^{(k)}\right\}$ for each original replica k

DESCRIPTION OF THE METHOD

(c) We construct the covariance matrix of $\left\{a_{i}^{(k)}\right\}$ coefficients

$$
\operatorname{cov}_{i j}^{(\mathrm{a})} \equiv \frac{N_{\text {rep }}}{N_{\text {rep }}-1}\left(\left\langle a_{i} \cdot a_{j}\right\rangle_{\text {rep }}-\left\langle a_{i}\right\rangle_{\text {rep }}\left\langle a_{j}\right\rangle_{\text {rep }}\right), \quad i, j=1, \ldots, N_{\text {eig }}
$$

(d) We diagonalize the inverse of $\operatorname{cov}_{i j}^{(a)}$, the one-sigma uncertainty is

$$
\sigma_{H, \alpha}^{\mathrm{PDF}}\left(x, Q^{2}\right)=\sqrt{\sum_{i=1}^{N_{\text {eig }}}\left[\sum_{j=1}^{N_{\text {eig }}} \frac{v_{i j}}{\sqrt{\lambda_{i}}}\left(\eta_{\alpha}^{(j)}\left(x, Q^{2}\right)-f_{\alpha}^{(0)}\left(x, Q^{2}\right)\right)\right]^{2}}
$$

where $v_{i j}$ is rotation matrix, and λ_{i} the set of eigenvalues.

DESCRIPTION OF THE METHOD

The final symmetric Hessian eigenvectors

$$
\widetilde{f}_{\alpha}^{(i)}\left(x, Q^{2}\right)=f_{\alpha}^{(0)}\left(x, Q^{2}\right)+\sum_{j=1}^{N_{\text {eig }}} \frac{v_{i j}}{\sqrt{\lambda_{i}}}\left(\eta_{\alpha}^{(j)}\left(x, Q^{2}\right)-f_{\alpha}^{(0)}\left(x, Q^{2}\right)\right)
$$

The one-sigma uncertainty band is then

$$
\sigma_{H, \alpha}^{\mathrm{PDF}}\left(x, Q^{2}\right)=\sqrt{\sum_{i=1}^{N_{\text {eig }}}\left(\tilde{f}_{\alpha}^{(i)}\left(x, Q^{2}\right)-f_{\alpha}^{(0)}\left(x, Q^{2}\right)\right)^{2}}
$$

DESCRIPTION OF THE METHOD

The final symmetric Hessian eigenvectors

$$
\tilde{f}_{\alpha}^{(i)}\left(x, Q^{2}\right)=f_{\alpha}^{(0)}\left(x, Q^{2}\right)+\sum_{j=1}^{N_{\text {eig }}} \frac{v_{i j}}{\sqrt{\lambda_{i}}}\left(\eta_{\alpha}^{(j)}\left(x, Q^{2}\right)-f_{\alpha}^{(0)}\left(x, Q^{2}\right)\right)
$$

The one-sigma uncertainty band is then

$$
\sigma_{H, \alpha}^{\mathrm{PDF}}\left(x, Q^{2}\right)=\sqrt{\sum_{i=1}^{N_{e i g}}\left(\tilde{f}_{\alpha}^{(i)}\left(x, Q^{2}\right)-f_{\alpha}^{(0)}\left(x, Q^{2}\right)\right)^{2}}
$$

To be compared to the standard deviation of the prior MC set:

$$
\sigma_{\alpha}^{\mathrm{PDF}}\left(x, Q^{2}\right)=\sqrt{\left\langle\left(f_{\alpha}^{(k)}\left(x, Q^{2}\right)\right)^{2}\right\rangle_{\text {rep }}-\left\langle f_{\alpha}^{(k)}\left(x, Q^{2}\right)\right\rangle_{\text {rep }}^{2}}
$$

THE mc2hessian NUMERICS

NUMERICAL IMPLEMENTATION

Practical implementation issues

1. the grid of points in x : $1-\sigma$ and the 68% confidence level intervals

2. the optimal basis of replicas, the optimal number of symmetric eigenvectors for the Hessian representation

NUMERICAL IMPLEMENTATION

We define an estimator which measures the distance between the prior MC and its Hessian representation:

$$
\mathrm{ERF}_{\sigma}=\sum_{i=1}^{N_{x}} \sum_{\alpha=1}^{N_{f}}\left|\frac{\sigma_{H, \alpha}^{\mathrm{PDF}}\left(x_{i}, Q_{0}^{2}\right)-\sigma_{\alpha}^{\mathrm{PDF}}\left(x_{i}, Q_{0}^{2}\right)}{\sigma_{\alpha}^{\mathrm{PDF}}\left(x_{i}, Q_{0}^{2}\right)}\right|
$$

- We introduce an ϵ threshold for the exclusion of regions in x where the Gaussian approximation is no reliable.
- We implement a Genetic Algorithm in function of ϵ and $N_{\text {eig }}$ which minimizes the estimator.

NUMERICAL IMPLEMENTATION

- Surface: GA minimum for estimator in function of ϵ and $N_{\text {eig }}$.
- Blue curve: surface minimum; black curve: estimator with large ϵ.

NUMERICAL IMPLEMENTATION

Estimator: Random vs. GA basis

NNPDF3.0 NLO \longrightarrow Hessian representation with $N_{\text {eig }}=120$

- We use $\epsilon=25 \%$ motivated by the previous slide.

VALIDATION AND BENCHMARKING

VALIDATION OF NNPDF3.0 CONVERSION

PDF comparison: MC vs. Hessian representations

- Good agreement: differences in the one-sigma PDF uncertainty bands of the order 5% at most between the two representations.

VALIDATION OF NNPDF3.0 CONVERSION

Luminosities and Correlations:

- Reasonable agreement: small differences due to the information loss when moving from the MC to the Hessian representation.

VALIDATION OF NNPDF3.0 CONVERSION

Full correlations matrix:

Good agreement: small differences due to the information loss when moving from the MC to the Hessian representation.

SELF-CLOSURE TEST

MMHT2014 NLO SELF-CLOSURE TEST

Starting from the original Hessian MMHT14 NLO set:

1. Construct its MC representation (Watt \& Thorne '12)
2. Run the mc2hessian algorithm

In this case, the estimator minimum is obtained with
12 symmetric eigenvectors.

Self-closure Test Output:

mc2hessian successful \Rightarrow original and the new Hessian representations are close to each other

MMHT2014 NLO SELF-CLOSURE TEST

PDF comparison: Original MMHT2014 vs. Hessian from MC

- Agreements better than 5% of the uncertainty between the two Hessian representations.
- The mc2hessian is able to compress information of the native Hessian representations, reducing the total number of eigenvectors.

PHENOMENOLOGY

LHC PHENOMENOLOGY

LHC inclusive cross-sections @ 13 TeV

LHC $13 \mathrm{TeV}, \alpha_{\mathrm{S}}=0.118$, NNPDF3.0 NLO

LHC $13 \mathrm{TeV}, \alpha_{\mathrm{s}}=0.120$, MMHT14 NLO

- Good agreement for LHC inclusive cross-sections, discrepancies below 10\%.

LHC PHENOMENOLOGY

LHC differential distributions @ 7 TeV for NNPDF3.0 NLO

- Very good agreement for a large number of differential distributions at the LHC 7 TeV , differences always below 10%.

DELIVERY

SUMMARY \& DELIVERY

- The mc2hessian program is public available at
github.com/scarrazza/mc2hessian
- Further optimizations in progress before final release.
- NNPDF3.0 Hessian version available in LHAPDF6 soon:
- NNPDF30_nlo_as_0118_hessian
- NNPDF30_nnlo_as_0118_hessian
- Any other MC set can be converted using directly the public code.

QUESTIONS?

