Les Houches: BSM WG

Conveners: C.Delaunay, A. Delgado(TH) G. Brooijmans (Exp)

Collisions at 13 TeV!!!!!

Big Questions

- Although the Run-I of the LHC has been a huge success with the Higgs discovery....
- There are still several questions that 'we hope' the Run-II of LHC will be able to address.....
- Data are being taken right now so keep your fingers crossed.

• We still have to know if the Higgs is just the SM higgs or its nature is different

• We still have to know if the Higgs is just the SM higgs or its nature is different

Higgs WG (Collaboration across WG is encouraged)

• We still have to know if the Higgs is just the SM higgs or its nature is different

Higgs WG (Collaboration across WG is encouraged)

- We still have to know if the Higgs is just the SM higgs or its nature is different
- Related to the previous point (or maybe a different way of saying it), how is EW breaking realized?

• The nature of the EWSB could be:

- The nature of the EWSB could be:
 - weakly coupled: SUSY, little Higgs, fine-tuned as in the SM

- The nature of the EWSB could be:
 - weakly coupled: SUSY, little Higgs, fine-tuned as in the SM
 - strongly coupled: Composite Higgs

• Naturalness still drives much of the model building:

- Naturalness still drives much of the model building:
 - Anthropic

- Naturalness still drives much of the model building:
 - Anthropic
 - SUSY

- Naturalness still drives much of the model building:
 - Anthropic
 - SUSY
 - strongly coupled

- Naturalness still drives much of the model building:
 - Anthropic
 - SUSY
 - strongly coupled
 - neutral naturalness

- Naturalness still drives much of the model building:
 - Anthropic
 - SUSY
 - strongly coupled
 - neutral naturalness
 - Relaxation

 Dark matter, still the only BSM physics we are sure about (ok....neutrinos):

- Dark matter, still the only BSM physics we are sure about (ok....neutrinos):
 - WIMP

- Dark matter, still the only BSM physics we are sure about (ok....neutrinos):
 - WIMP
 - SuperWIMP

- Dark matter, still the only BSM physics we are sure about (ok....neutrinos):
 - WIMP
 - SuperWIMP
 - Non-thermal

- Dark matter, still the only BSM physics we are sure about (ok....neutrinos):
 - WIMP
 - SuperWIMP
 - Non-thermal
 - asymmetric

- Dark matter, still the only BSM physics we are sure about (ok....neutrinos):
 - WIMP
 - SuperWIMP
 - Non-thermal
 - asymmetric
 - •

• Baryogenesis/leptogenesis

- Baryogenesis/leptogenesis
- Inflation/tensor modes

- Baryogenesis/leptogenesis
- Inflation/tensor modes
- Flavour

- Baryogenesis/leptogenesis
- Inflation/tensor modes
- Flavour
- CC?

- Baryogenesis/leptogenesis
- Inflation/tensor modes
- Flavour
- CC?
- •

Experimental data

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Feb 2015

 $\sqrt{s} = 7, 8 \text{ TeV}$

010	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fb	1) Mass limit	Reference
Inclusive Searches	MSUGRA/CMSSM $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\ell}_{1}^{0}$ $\tilde{q}\tilde{q}\gamma, \tilde{q} \rightarrow q\tilde{\ell}_{1}^{0}$ (compressed) $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\ell}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\ell}_{1}^{0} \rightarrow qqW^{\pm}\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\ell\nu/\nu\nu)\tilde{\ell}_{1}^{0}$ GMSB ($\tilde{\ell}$ NLSP) GGM (bino NLSP) GGM (wino NLSP) GGM (higgsino hono NLSP) GGM (higgsino NLSP) GGM (higgsino NLSP)	$\begin{array}{c} 0 \\ 0 \\ 1 \gamma \\ 0 \\ 1 e, \mu \\ 2 e, \mu \\ 1 \cdot 2 \tau + 0 \cdot 1 \ell \\ 2 \gamma \\ 1 e, \mu + \gamma \\ \gamma \\ 2 e, \mu (Z) \\ 0 \end{array}$	2-6 jets 2-6 jets 0-1 jet 2-6 jets 3-6 jets 0-3 jets 0-2 jets 1 b 0-3 jets mono-iet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20 20 20 20.3 20.3 20.3 4.8 4.8 5.8 20.3	\tilde{q} . \tilde{z} 1.7 TeV $m(\tilde{q})=m(\tilde{g})$ \tilde{q} 850 GeV $m(\tilde{q})=m(\tilde{g})$ \tilde{q} 250 GeV $m(\tilde{q})=m(\tilde{g})$ \tilde{q} 250 GeV $m(\tilde{q})=m(\tilde{g})$ \tilde{q} 250 GeV $m(\tilde{q})=m(\tilde{g})$ \tilde{q} 250 GeV $m(\tilde{q})=0$ GeV $m(\tilde{q})=m(\tilde{g})$ \tilde{k} 1.33 TeV $m(\tilde{q})=0$ GeV $m(\tilde{q})=0.5(m(\tilde{\chi}_1^0)+m(\tilde{g}))$ \tilde{k} 1.2 TeV $m(\tilde{q}_1^0)=0$ GeV $\tilde{k}^0_1=0.5(m(\tilde{\chi}_1^0)+m(\tilde{g}))$ \tilde{k} 1.32 TeV $m(\tilde{\chi}_1^0)=0$ GeV $\tilde{k}^0_1=0.5(m(\tilde{\chi}_1^0)+m(\tilde{g}))$ \tilde{k} 1.28 TeV $m(\tilde{\chi}_1^0)=0$ GeV $m(\tilde{\chi}_1^0)=0.5(m(\tilde{\chi}_1^0)+m(\tilde{g}))$ \tilde{k} 619 GeV $m(\tilde{\chi}_1^0)=50$ GeV $m(\tilde{\chi}_1^0)=50$ GeV \tilde{k} 619 GeV $m(\tilde{\chi}_1^0)=50$ GeV $m(\tilde{\chi}_1^0)=50$ GeV \tilde{k} 600 GeV $m(\tilde{\chi}_1^0)=50$ GeV $m(\tilde{\chi}_1^0)=50$ GeV \tilde{k} 619 GeV $m(\tilde{\chi}_1^0)=50$ GeV $m(\tilde{\chi}_1^0)=50$ GeV \tilde{k} 690 GeV $m(\tilde{\chi}_1^0)=50$ GeV $m(\tilde{\chi}_1^0)=50$ GeV \tilde{k} 690 GeV $m(\tilde{\chi}_1^0)=50$ GeV $m(\tilde{\chi}_1^0)=1.5$ TeV	1405.7875 1405.7875 1411.1559 1405.7875 1501.03555 1501.03555 1407.0603 ATLAS-CONF-2014-001 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 1502.01518
3 rd gen. ἒ med.	$\vec{s} \rightarrow b \vec{b} \vec{\chi}_{1}^{0}$ $\vec{s} \rightarrow t \vec{l} \vec{\chi}_{1}^{0}$ $\vec{s} \rightarrow t \vec{l} \vec{\chi}_{1}^{0}$ $\vec{s} \rightarrow b \vec{l} \vec{\chi}_{1}^{+}$	0 0 0-1 e,µ 0-1 e,µ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	k 1.25 TeV m(k) + kk to b t, m(g) = kk to b t k 1.25 TeV m(k) + kk to b t, m(g) = kk to b t k 1.1 TeV m(k) + kk to b t k 1.1 TeV m(k) + kk to b t k 1.1 TeV m(k) + kk to b t k 1.34 TeV m(k) + kk to b t k 1.34 TeV m(k) + kk to b t k 1.3 TeV m(k) + kk to b t	1407.0600 1308.1841 1407.0600 1407.0600
3rd gen. squarks direct production	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{x}_1^0$ $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{x}_1^n$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{x}_1^n$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{x}_1^n$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W \tilde{t}_1^0$ or $t \tilde{x}_1^0$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{x}_1^0$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{x}_1^0$ $\tilde{t}_1 \tilde{t}_1$ (natural GMSB) $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	0 $2 e, \mu$ (SS) $1-2 e, \mu$ $2 e, \mu$ $0 \cdot 1 e, \mu$ 0 m $2 e, \mu$ (Z) $3 e, \mu$ (Z)	2 b 0-3 b 1-2 b 0-2 jets 1-2 b tono-jet/c-t 1 b 1 b	Yes Yes Yes Yes Yes ag Yes Yes Yes	20.1 20.3 4.7 20.3 20 20.3 20.3 20.3 20.3	k_1 100-620 GeV $m(\tilde{k}_1^0) < 90 \text{ GeV}$ k_1 275-440 GeV $m(\tilde{k}_1^0) < 90 \text{ GeV}$ \tilde{k}_1 275-440 GeV $m(\tilde{k}_1^0) = 2m(\tilde{k}_1^0)$ \tilde{l}_1 110-167 GeV 230-460 GeV $m(\tilde{k}_1^0) = 2m(\tilde{k}_1^0), m(\tilde{k}_1^0) = 55 \text{ GeV}$ \tilde{l}_1 90-191 GeV 215-530 GeV $m(\tilde{k}_1^0) = 1 \text{ GeV}$ $m(\tilde{k}_1^0) = 1 \text{ GeV}$ \tilde{l}_1 90-240 GeV $m(\tilde{k}_1^0) = 156 \text{ GeV}$ $m(\tilde{k}_1^0) = 156 \text{ GeV}$ \tilde{l}_1 90-240 GeV $m(\tilde{k}_1^0) = 150 \text{ GeV}$ $m(\tilde{k}_1^0) = 150 \text{ GeV}$ \tilde{l}_1 90-240 GeV $m(\tilde{k}_1^0) = 150 \text{ GeV}$ $m(\tilde{k}_1^0) = 150 \text{ GeV}$ \tilde{l}_1 90-240 GeV $m(\tilde{k}_1^0) = 00 \text{ GeV}$ $m(\tilde{k}_1^0) = 150 \text{ GeV}$ \tilde{l}_2 290-600 GeV $m(\tilde{k}_1^0) = 150 \text{ GeV}$ $m(\tilde{k}_1^0) = 150 \text{ GeV}$	1308.2631 1404.2500 1209.2102, 1407.0583 1403.4853, 1412.4742 1407.0583,1406.1122 1407.0608 1403.5222 1403.5222
EW direct	$\begin{array}{l} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R},\tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\bar{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+} \rightarrow \bar{\nu}\nu(\tau\bar{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L}\nu\tilde{\ell}_{L}\ell(\bar{\nu}\nu),\ell\bar{\nu}\tilde{\ell}_{L}\ell(\bar{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\ell}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, h \rightarrow b\bar{b}/W W/\tau\tau/\gamma \\ \tilde{\chi}_{2}^{0}\tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R}\ell \end{array}$	2 ε,μ 2 ε,μ 2 τ 3 ε,μ 2 3 ε,μ γ ε,μ,γ 4 ε,μ	0 0 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086
Long-lived particles	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu$ GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_{1}^{0}$ $\tilde{q}\tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow qq\mu$ (RPV)	Disapp. trk 0 trk (4) 1-2 µ 2 γ 1 µ, displ. vtx	1 jet 1-5 jets - -	Yes Yes · Yes ·	20.3 27.9 19.1 19.1 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1310.3675 1310.6584 1411.6795 1411.6795 1409.5542 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_e + X_e \tilde{v}_\tau \rightarrow e + \mu \\ LFV pp \rightarrow \tilde{v}_\tau + X_e \tilde{v}_\tau \rightarrow e(\mu) + \tau \\ Blinear RPV CMSSM \\ \tilde{x}_1^+ \tilde{x}_1^-, \tilde{x}_1^+ \rightarrow W \tilde{x}_1^0, \tilde{x}_1^0 \rightarrow ee \tilde{v}_\mu, e\mu \tilde{v}_e \\ \tilde{x}_1^+ \tilde{x}_1^-, \tilde{x}_1^+ \rightarrow W \tilde{x}_1^0, \tilde{x}_1^0 \rightarrow \tau \tau \tilde{v}_e, e\tau \tilde{v}_\tau \\ \tilde{g} \rightarrow qqq \\ \tilde{g} \rightarrow \tilde{f}_1 t, \tilde{t}_1 \rightarrow bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu \ (\text{SS}) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (\text{SS}) \end{array}$	0-3 b 	- Yes Yes Yes - Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\ell}_1^0$ $\sqrt{s} = 7 \text{ TeV}$ full data	0 /s = 8 TeV artial data	2c $\sqrt{s} =$ full	Yes 8 TeV data	20.3 1	2 490 GeV m(ℓ ⁰ ₁)<200 GeV	1501.01325

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

ATLAS_Preliminary

Goals for Les Houches

- Form small groups to work on a particular topic relevant for the LHC
- Take advantage of having a good collection of theorists and experimentalist in a wonderful location
- Produce a document!!!!!

Possible list of topics

● ○ ● 🖉 Les Houches 2015 - Les Hit × 🖉 2015:topi	cs [Les Houches] ×	Antonio
		* 🗣 🔒 ≡
🔛 Apps 😄 Rainfall and MSLP 📄 10-Day Precipitation	🧧 arXiv.org 🛛 Welcome Page Theo 🎼 HEP - HEP 🛛 🖪 ELPAIS.com 🛛 :.: El Foro Cofrade 🐖 🛟 Watch Series Online	» 📄 Other Bookmarks
	New States and Thechniques Compressed spectra in SUSY: alternative signals Theories where non-color particles cancel the quadratic divergence: The Twin Higges et al. How to look for these? BSM simulation at NLO in QCD Standardizing cross section information in the SLHA format (finalizing what has been initiated in 2013) Superboosted tops Vector-like Quark/Top partner searches: recommendation for presentation of searches for weak single production New Heavy gauge bosons: Prospects/priorities for run-II Compositeness scenarios: possibile to present results in terms of a useful simplified parametrisation (like MSSM/pMSSM etc)? Is the current status of boosted object reconstruction techniques sufficient for Run-II BSM searches?	