TOOLS AND MC (exp)

V.Ciulli, Università and INFN Firenze

Les Houches Workshop Series "Physics at TeV Colliders" 2015

Tools and MC

■ Matrix Element + Parton Shower + Non Perturbative corrections

- I will discuss some recent example of their usage by the experiments
 - not a review!
- In the past a lot of work has been done in the NP corrections: tuning of multiparton interactions, the underlying event and hadronization
- In the latest years focus has moved towards the interface between Matrix Element calculation (often at NLO) and Parton Shower
- What should be done next and what can we do at Les Houches?
 - as usual more ideas are welcomed!

Evolution of MC tools

Looking back at available predictions for V+jets in 2011

- ME+PS at LO
 - impressively good, but estimate of systematics not available
- Fixed order results at NLO
 - no matching with PS or merging of different multiplicities

Evolution of MC tools

TODAY: NLO-PS matching available up to 2 additional partons with merging of different multiplicity (shorted as **MEPS@NLO**)

- a meaningful scale uncertainty can be evaluated
- PS and UE tune uncertainties on the other hand have been neglected so far

Concerning the results:

- MEPS (LO) overestimate data at high jet p_T
- ► NLO slightly underestimate data at high jet p_T

Parton and particle level predictions

As an example, the last ATLAS paper W+jets compares kinematic distributions with a long list of theoretical predictions

Eur. Phys. J. C (2015) 75:82

Program	Max. number of partons at			Parton/particle level Distributions shown		
	Approx. NNLO $(\alpha_s^{N_{jets}+2})$	$NLO \\ (\alpha_s^{N_{jets}+1})$	$LO \\ (\alpha_s^{N_{jets}})$			
LoopSim	1	2	3	Parton level	Leading jet $p_{\rm T}$ and $H_{\rm T}$	
				with corrections	for $W + \ge 1$ jet	
BLACKHAT+SHERPA	_	5	6	Parton level	All	
				with corrections		
BLACKHAT+SHERPA	1	2	3	Parton level	Leading jet $p_{\rm T}$ and $H_{\rm T}$	
Exclusive sums				with corrections	for $W + \ge 1$ jet	
HEJ	All orders, resummation			Parton level	All	
					for $W + \ge 2$, 3, 4 jets	
MEPS@NLO	_	2	4	Particle level	All	
ALPGEN	_	_	5	Particle level	All	
SHERPA	_	_	4	Particle level	All	

Z+jets, W+jets

Benchmarks for ME-PS matching/merging

All corners of phase space have been, and still are, studied in details:

Angular correlations

very good agreement for most theoretical predictions

Z+jets, W+jets

Similar thrend as observed for jet p_T :

- ► MEPS at LO above data at high H_T, while (N)NLO fixed-order is below
- ► MEPS@NLO does an excellent job on H_T

Powheg describes slightly better the transverse thrust

Z+jets, W+jets

Not many results at 8 TeV yet, but preliminary ones show that the increased statistics allows measurements of reloubles differential x-sec

Double differential x-sec vs jet p_T and rapidity

eV]

CMS-PAS-SMP-14-009

same behaviour for MEPS and MEPS@NLO vs pT as before ME+PS overshoot data at high jet pT

W/Z+jets

Overall there is good agreement with data, but in some case there are important discrepancies

▶ only *HEJ* (BFKL approx. for 2 or more partons) describes m₁₂

5-flavour vs 4-flavour in Z+b(b)

Differential distributions for Z+bb

Some hints might come from tension at low ΔR , dominated by gluon splitting \rightarrow tune?

B-hadron identified by displaced secondary vertex

 ΔR_{BB}

Z+jets/γ+jets

Crucial for searches based on MET because γ +jets is used to estimate Z $\rightarrow \nu\nu$ background

Results recently submitted by CMS: arXiv.1505.06250

 measures both Z and γ differential p_T distribution vs number of jets and calculate the ratio

Z+jets/γ+jets

Crucial for searches based on MET because $\gamma \text{+jets}$ is used to estimate $Z {\rightarrow} \nu \nu$ background

Results recently submitted by CMS: arXiv.1505.06250

 measures both Z and γ differential p_T distribution vs number of jets and calculate the ratio

- ME+PS does not correctly describe the p_T of both bosons
- ► BlackHat+Sherpa (top) flat at high boson p_T but 10%-20% lower

Z+jets/γ+jets

LO predictions for the ratio vs data off by 20% but flat!

BH prediction (NLO for both processes) are also ~10% larger than data

Scale uncertainty of NLO predictions

- scale $H_T' = H_T + E_T(Z,\gamma)$
- cancel in the ratio if considered fully correlated between the two processes
- would clearly underestimate the theoretical uncertainty
- largest relative scale uncertainty on each process used for the uncertainty on the ratio
- is there a better suggestion on how to handle these cases?

EWK corrections to Z+jets/γ+jets

Khün et al. JHEP0603:059,2006

EWK corrections are ~10% at $\sqrt{s} = 14$ TeV for up to 1 TeV

► NNLO here means dominant 2-loop EWK

Somewhat smaller at 8 TeV but they could explain the difference

• for $\sqrt{s} = 2$ TeV corrections are < 5% for up to 400 GeV p_T)

Will certainly be important at 13 TeV!

tt production

With statistical precision reached at LHC is a **new benchmark process** for MC

- The modelling of ISR and FSR radiation in ttbar production is one of the dominant uncertainties in the measurement of the top mass
- A lot of ongoing work to study systematics uncertainties in MC modelling

Some ATLAS measurements used to compare/tune MC to data (available in RIVET):

- tt gap fraction Eur. Phys. J. C72 (2012) 2043
 - The inclusive gap fraction as function of the leading jet pT threshold, Q0
- ► tt+jets differential xsec JHEP01(2015)020
 - The distribution of the leading and 5th jet pT and the number of jets for jets with pT>25 and pT>80 GeV
- ▶ jet shapes in tt events Phys. Rev. D 90, 072004 (2014)
 - The distributions of differential jet shapes for jets with 30<pT<150 GeV (5 observables) for light- and b-jets separately.

Gap fraction analysis

Eur. Phys. J. C72 (2012) 2043 Study fraction of $t\bar{t}$ events, that do not contain an additional jet(s):

- Sensitive to the amount of extra radiation
- Use dilepton events with two reconstructed b-quark jets \rightarrow additional (radiated) jets easily to identify

Provided unfolded distributions

Fraction of events that do not contain an additional jet in a central rapidity region with $p_T > Q_0$:

$$f_{gap}(Q_0) = \frac{n_{gap}(Q_0)}{N_{t\bar{t}}}$$

Sum of the p_T of the jets falling into each rapidity region

$$f_{gap}(Q_{sum}) = \frac{n_{gap}(Q_{sum})}{N_{t\bar{t}}}$$

Official Rivet routine since Rivet 1.8.1

Similar Analysis from CMS:

- 7 TeV: arXiv:1404.3171
- 8 TeV: CMS-PAS-TOP-12-041

5

Study of scale uncertainty

ATL-PHYS-PUB-2014-005 / ATL-PHYS-PUB-2015-011

Several generators studied

Main focus on POWHEG+PYTHIA6/PYTHIA8/Herwig++ compared to MC@NLO, Madgraph_aMC@NLO+HERWIG++, SHERPA

- scale/hdamp variations in Powheg have approx. the same size as scale variations in Madgraph5_aMC@NLO
- none of the variations gives good agreement in p_T(t)

Correlated variations of ME and PS scales

No big effect observed by changing PS scale in addition to ME scale

TOPLHCWG meeting 12.01.2015 Dominic Hirschbühl

Tuning strategy on tt

ATL-PHYS-PUB-2015-007

List of parameters:

Parameter	Pythia8 setting	Variation range	4C	Monash
$\alpha_s^{\text{ISR}}(m_Z)$	<pre>SpaceShower:alphaSvalue</pre>	0.110 - 0.140	0.137	0.1365
ISR damping	<pre>SpaceShower:pTdampMatch</pre>	1 (fixed)	0	0
$p_{\mathrm{T,damp}}^{\mathrm{ISR}}$	<pre>SpaceShower:pTdampFudge</pre>	0.8 - 1.8	-	-
$\alpha_s^{\text{FSR}}(m_Z)$	TimeShower:alphaSvalue	0.110 - 0.150	0.1383	0.1365
$p_{\mathrm{T,min}}^{\mathrm{FSR}}$ [GeV]	TimeShower:pTmin	0.1 - 2.0	0.4	0.5

- Tune the Pythia8 ISR parameters to the gap fraction and tt+jets
- Tune the Pythia8 FSR parameters to the jet shapes in ttbar
- Combine tune of both ISR and FSR parameters to all the measurements
- Returne the MPI cut-off to maintain the description of UE data
- Apply the Pythia8 tune to NLO+PS generators, tuning additional parameters sensitive to the extra radiation to the gap fraction and tt+jets

Results for PYTHIA8 stan

- Can describe extra ra
 by adding a damping
 emission probability
- The tuned value of α_ξ
 Shapes is compatible with LLL uata

Tune applied to NLO+PS generators Powheg and MadGraph5_aMC@NLO

Prediction/Data

- additional parameters *hdamp* and *frac_upp/low* have been tuned to data
- a good agreement with data is found for both ME generators

50

100

200

300

1000

WW cross-section

Multiboson Cross S	Section Measurements	Status: March 2015	∫£ dt [fb ^{−1}]	Reference		
$\sigma^{\rm fid}(\gamma\gamma)[\Delta R_{\gamma\gamma} > 0.4]$	$\sigma = 44.0 + 3.2 - 4.2 \text{ pb (data)}$ 2 γ NNLO (theory)		4.9	JHEP 01, 086 (2013)		
$\sigma^{\rm fid}(W\gamma \to \ell \nu \gamma)$	$\sigma = 2.77 \pm 0.03 \pm 0.36 \text{ pb} (\text{data})$ NNLO (theory)		4.6	PRD 87, 112003 (2013) arXiv:1407 1618 [hep-ph]		
$-[n_{\rm jet}=0]$	$\sigma = 1.76 \pm 0.03 \pm 0.22 \text{ pb (data)}$ NNLO (theory)	Run 1 $\sqrt{s} = 7, 8 \text{ TeV}$	4.6	PRD 87, 112003 (2013)		
$\sigma^{fid}(Z\gamma o \ell\ell\gamma)$	$\sigma = 1.31 \pm 0.02 \pm 0.12 \text{ pb} \text{ (data)}$ NNLO (theory)		4.6	PRD 87, 112003 (2013) arXiv:1407,1618 [hep-ph]		
$-[n_{ m jet}=0]$	$\sigma = 1.05 \pm 0.02 \pm 0.11 \text{ pb (data)}$ NNLO (theory)		4.6	PRD 87, 112003 (2013)		
$\sigma^{\rm fid}(W\gamma\gamma \to \ell \nu \gamma \gamma)$	$\sigma = 6.1 + 1.1 - 1.0 \pm 1.2 \text{ fb (data)} \\ \text{MCFM NLO (theory)}$	Δ	20.3	arXiv:1503.03243 [hep-ex		
$-[n_{\rm jet}=0]$	$\sigma = 2.9 + 0.8 - 0.7 + 1.0 - 0.9 \text{ fb (data)}$	▲	20.3	arXiv:1503.03243 [hep-ex		
$\sigma^{fid}(pp \rightarrow WV \rightarrow \ell \nu qq)$	$\sigma = 1.37 \pm 0.14 \pm 0.37 \text{ pb (data)}$ MC@NLO (theory)		4.6	JHEP 01, 049 (2015)		
$\sigma^{fid}(W^{\pm}W^{\pm}jj)$ EWK	$\sigma = 1.3 \pm 0.4 \pm 0.2$ fb (data) PowhegBox (theory)	3	20.3	PRL 113, 141803 (2014)		
$\sigma^{\text{total}}(pp \rightarrow WW)$	$\sigma = 51.9 \pm 2.0 \pm 4.4 \text{ pb (data)}$ $MCFM (theory)$ $\sigma = 71.4 \pm 1.2 \pm 5.5 - 4.9 \text{ pb (data)}$ $MCFM (theory)$		4.6 20.3	PRD 87, 112001 (2013) ATLAS-CONF-2014-033		
$-\sigma^{fid}$ (WW \rightarrow ee) [n _{jet} =0]	$\sigma = 56.4 \pm 6.8 \pm 10.0 \text{ fb (data)}$ MCFM (theory)		4.6	PRD 87, 112001 (2013)		
$-\sigma^{fid}(WW \rightarrow \mu\mu) [n_{jet}=0]$	$\sigma = 73.9 \pm 5.9 \pm 7.5$ fb (data) MCFM (theory)		4.6	PRD 87, 112001 (2013)		
$-\sigma^{fid}(WW \rightarrow e\mu) [n_{jet}=0]$	$\sigma = 262.3 \pm 12.3 \pm 23.1 \text{ fb (data)}$ MCFM (theory)	LHC pp $\sqrt{s} = 7$ lev	4.6	PRD 87, 112001 (2013)		
$-\sigma^{fid}(WW \rightarrow e\mu) [n_{jet} \ge 0]$	σ = 563.0 ± 28.0 + 79.0 - 85.0 fb (data) MCFM (theory)	Observed	4.6	arXiv:1407.0573 [hep-ex]		
$\sigma^{\text{total}}(pp \rightarrow WZ)$	$\sigma = 19.0 + 1.4 - 1.3 \pm 1.0 \text{ pb (data)}$ MCFM (theory) $\sigma = 20.3 + 0.8 - 0.7 + 1.4 - 1.3 \text{ pb (data)}$	stat stat+syst	4.6 13.0	EPJC 72, 2173 (2012) ATLAS-CONF-2013-021		
$-\sigma^{fid}(WZ \rightarrow \ell \nu \ell \ell)$	$\sigma = 99.2 + 3.8 - 3.0 + 6.0 - 6.2 \text{ fb (data)}$		13.0	ATLAS-CONF-2013-021		
$\sigma^{\text{total}}(\mathbf{pp} \rightarrow \mathbf{ZZ})$	$\sigma = 6.7 \pm 0.7 + 0.5 - 0.4 \text{ pb (data)}$ $\sigma = 7.1 + 0.5 - 0.4 \pm 0.4 \text{ pb (data)}$ $MCFM (theory)$	LHC pp $\sqrt{s} = 8$ lev	4.6 20.3	JHEP 03, 128 (2013) ATLAS-CONF-2013-020		
$-\sigma^{\text{total}}(pp \rightarrow ZZ \rightarrow 4\ell)$	$\sigma = 76.0 \pm 18.0 \pm 4.0 \text{ fb} (\text{data})$ Powheg (theory) $\sigma = 107.0 \pm 9.0 \pm 5.0 \text{ fb} (\text{data})$ Powheg (theory)	Observed	4.5 20.3	arXiv:1403.5657 [hep-ex] arXiv:1403.5657 [hep-ex]		
$-\sigma^{fid}(ZZ o 4\ell)$	$\sigma = 25.4 + 3.3 - 9.0 + 1.6 - 1.4 \text{ fb} (data)$ PowhegBox & gg2ZZ (theory) $\sigma = 20.7 + 1.3 - 1.2 \pm 1.0 \text{ fb} (data)$	▲ stat stat+syst	4.6 20.3	JHEP 03, 128 (2013) ATLAS-CONF-2013-020		
$-\sigma^{fid}(ZZ^* o 4\ell)$	$\sigma = 29.8 + 3.8 - 3.5 + 2.1 - 1.9 \text{ fb (data)}$ PowhegBox & gg2ZZ (theory)		4.6	JHEP 03, 128 (2013)		
$-\sigma^{fid}(ZZ^* \to \ell\ell\nu\nu)$	$\sigma = 12.7 + 3.1 - 2.9 \pm 1.8 \text{ fb (data)}$ PowhegBox & gg2ZZ (the		4.6	JHEP 03, 128 (2013)		
	0.2 0.4 0.6 0.8 1.0 1.2	1.4 1.6 1.8 2.0 2.2 2.4 2.6				
		observed/theory				

WW cross-section

Due to observed discrepancy, raised a lot theoretical interest

Cross-section known at NNLO QCD

- T. Gehrmann et al. [1408.5243]
- ► 7% higher than NLO
- gg→H→WW only 3% of signal yields (considered as a background)

However different categories for 0 and 1 reconstructed jet with pT > 30 GeV and $l\eta l < 4.7$

0-jet and 1-jet bin makes the kinematics sensitive to higher-order QCD

CMS-PAS-SMP-14-016

WW p_T reweighting

Improve modelling by reweighting $p_T(WW)$ of $qq \rightarrow WW$ to a NLO+NNLL pT resummed calculation

- ► strongly correlated with jet veto: ~3.5% effect on the 0-jet cross-section
- scale uncertainty of 2.8% (resummation) + 2.5% (renormalization) for 0-jet

This reweighting procedure raised some discussion

Stronger prescription from theory community needed for further progress!

WW normalized differential cross-sections

New nice set of results for MC comparison:

Measured in the 0-jet category. Results given in a fiducial phase space.

A list of items to work on

V+jets have been our workhorse

 however treatment of systematics still approximate: PS and UE tune uncertainties not deeply studied

V+b(b): still something to understand here, e.g. 5F vs 4F, tune,... γ +jets vs Z+jets: treatment of correlated scale systematics

- also important for tt and single-top or Z and W for Mw
 EWK corrections: need to tackle them now before 13 TeV data
 tt production is the new benchmark for MEPS@NLO
- allows study of systematics uncertainty/tuning of PS

VV+jets, ttV, etc... will become increasingly important:

are present tools good enough?

Scheduled sessions:

Thu: tt benchmark analysis

Fri: PS and matching/merging uncertainty

- Family of A14 full-scale tunes¹ with various PDFs to most ATLAS jet and underlying-event observables.
- Optimized MPI and ISR/FSR parameters.

→ Tunes are suitable for high p_T processes. → Improved description of UE data, $t\bar{t}$ gap fractions, and 3-to-2 jet ratios.

¹based on Monash2013 tune: MB+AU

²based on 4C tune

³based on Z2*-lep tune

Elena Yatsenko

• CUETP8M1 (MonashStar¹), CUETP8S and CUETP6S - tunes^{2,3} with various PDFs, include CDF and CMS UE data at $\sqrt{s} = 0.9$, 1.96 and 7 TeV.

- \rightarrow Test model of MPI energy dependence.
- → Attempt to describe "soft" and "semi-hard" MPI scatterings.

ISR TUNES CONSISTENCY

Dibosons

A. Calderón. Standard Model at LHC, 2015

Systematics

- PDF + α_s: PDF4LHC prescription, ~ 1.3%(0.8%) for qqWW (ggWW)
- Higher order corrections [1407.4481]
 - reweight Powheg by varying resummation scale at NLO+NNLL by half and twice the nominal value: 2.8%(6.9%) for 0-jet (1-jet)
 - renormalization by half and twice the nominal: 2.5%(6.3%) for 0jet (1-jet)

→ Same order systematic on the final signal efficiency obtained from Stewart-Tackmann recipe [1107.2117]

• UE+PS:

 three different showering tunes of the UE (CMS tune Z2*, ATLAS tune AUET2, new Tune 64 Z2*-Lep CMS) and two different PS (pythia and herwig). 3.5%

WW particle level definition (1/2)

- Fiducial and differential WW cross sections at Particle Level only (not at Parton Level)
- Particle Level definition:
 - stable particles from full ME+parton shower generators. WW results just <u>before</u> Final State Radiation (FSR).
 - without any simulation of the interaction of these particles with the detector components or any additional proton-proton interactions.
- **Definition of jets** at particle level:
 - define with anti-k_t algorithm, with R= 0.5, built from stable truth particles: electrons, muons, taus and neutrinos are removed from the collection of gen-particles.

WW particle level definition (2/2)

- **Definition of leptons** at particle level:
 - No isolation condition is imposed
 - Leptons just after W decay before FSR (BORN leptons)
 - Parent of the lepton require to be a W boson.
 - Taus considered as background: electrons and muons from tau decays are not considered as part of the signal.

• Further cuts in the event:

- Defined with hard jet veto in particle levels: No jets with |η| < 4.7 and a given maximum jet p_T (nominal value in the analysis is jet p_T > 30 GeV)
- Selected only eµ events with leptons=electron/muon are defined as before, and fulfilling:
 - pT > 20 GeV and $|\eta| < 2.5$