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We used to have a NP scale: ⇠ 4
p
⇡v ⇡ 1.7TeV

WLWL ! WLWL
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Post-LHC Higgs discovery => 
no clear experimentally-driven scale of new physics

Producing Top Quarks 
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•! 1.96 TeV pp collider 
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•! Record Inst. Lum. 3.6!1032 [cm-2sec-1] 
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A (tuned) SM Higgs works  ⇤ � 100000 . . . 0TeV



A light Higgs is unnatural

For 

V (h) = ✏⇤2h2 + �h4

hhi = 0

hhi = ⇤

Need: 

✏ = ± O(1)

p
✏ ⇠ mHiggs/⇤



A light Higgs is unnatural

For 

V (h) = ✏⇤2h2 + �h4

hhi = 0

hhi = ⇤

Need: 

✏ = ± O(1)

p
✏ ⇠ mHiggs/⇤

For ⇤ = MPlanck , MGUT , 10 TeV : ✏ ⇠ 10�32, 10�28, 10�4



light Higgs

light stops1,2, sbottomL,
higgsinos, gluinos, …  

Electro-weak symmetry breaking 
in times of austerity

light top partners 
(Q=5/3,2/3,1/3), 
anything else ?
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Fine-tuning of (Higgs mass)2

of naturalness can be reduced to a one-dimensional problem as in the Standard Model

V = m2
H |H|2 + �|H|4 (1)

where m2
H will be in general a linear combination of the various masses of the Higgs fields.

Each contribution to �m2
H to the Higgs mass naturally should be of the order or less than m2

H

itself. Therefore �m2
H/m2

H should not be large. By using m2
h = �2m2

H one usually defines

as a measure of fine-tuning
Barbieri:1987fn,Kitano:2006gv
[? ? ]

� ⌘ 2�m2
H

m2
h

(2)

where m2
h is the Higgs boson physical mass in the decoupling regime, or some linear com-

bination of the physical neutral Higgs bosons in fully mixed scenarios. As it is well known,

increasing the physical Higgs boson mass (i.e.the quartic coupling) alleviates the fine-tuning.

In a SUSY theory at tree level m2
H will include the µ term. Given the size of the top

mass, the soft mass of Higgs field coupling to the up-type quarks mHu is (quite model

independently) also among them. Whether the soft mass for the down-type Higgs, mHd
or

other soft terms in an extended Higgs sector should be as light as µ and mHu is instead a

model dependent question, and a heavier mHd
can even lead to improvements

Dine:1997qj,Csaki:2008sr
[? ? ]. The

phenomenological key point for direct searches for SUSY particles is therefore the lightness

of the Higgsinos since their mass is directly controlled by µ

µ <⇠ 190 GeV
✓

mh

120 GeV

◆ 
��1

20%

!�1/2

(3)

At loop level there are additional constraints. The Higgs potential in a SUSY theory

is corrected by both gauge and Yukawa interactions, the largest contribution coming from

the top-stop loop. In extensions of the MSSM there will also be corrections coming from

Higgs self-interactions, that can be important for large values of the couplings. The radiative

corrections to m2
H proportional to the top Yukawa coupling read

�m2
H |stop = � 3

8⇡2
y2
t

⇣
m2

U3
+ m2

Q3
+ |At|2

⌘
log

✓
⇤

TeV

◆
(4) eq:der1

at one loop in the leading logarithmic approximation, that is su�cient for the current dis-

cussion
?
[? ]. Here ⇤ denotes the scale at which SUSY breaking e↵ects are mediated to the

Supersymmetric SM. Since the soft parameters m2
U3,Q3

, At control the stop spectrum, as it
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stops, sbottomL

Higgsinos

SUSY
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ATLAS Preliminary

-1 = 4.7 fbintL -1 21 fb5 intL1
0

r¾W b 
-1 = 20 fbintL

Observed limits )theomObserved limits (-1 Expected limits

0L CONF-2013-024
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1L CONF-2013-037
-
2L CONF-2013-048

0L [1208.1447]
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Impressive limits, but significant parameter 
space remains

ALEPH limit ~ 80 GeV

Ideas? 

(see e.g.  arXiv:1212.6847)

http://arxiv.org/abs/arXiv:1212.6847
http://arxiv.org/abs/arXiv:1212.6847


Naturalness requires 
split squarks

M

8 dof
(ũ, d̃)L, ũR, d̃R,

(c̃, s̃)L, c̃R, s̃R

t̃1

t̃2 b̃L

b̃R



• two stops and one (left-handed) sbottom, both below 500 � 700 GeV.

• two higgsinos, i.e., one chargino and two neutralinos below 200 � 350 GeV. In the

absence of other chargino/neutralinos, their spectrum is quasi-degenerate.

• a not too heavy gluino, below 900 GeV � 1.5 TeV.

There are some model-dependent motivations for augmenting this minimal spectrum with

additional light states. For example, there could also be a light gravitino at the bottom of the

spectrum because a low mediation scale is motivated by reducing the size of the logarithm

in Eqs. 6 and 7. Or, there could be an extra light neutralino (such as a bino or singlino)

motivated by dark matter. The rest of the superparticles may all be decoupled.

The relevant task is to determine the lower bounds on the masses of third generation

squarks, the gluino, and higgsinos, coming from direct collider searches, such as the searches

that have been performed so far at the 7 TeV LHC. This will be the subject of the following

sections.

As we will summarize in the next section, the LHC presently sets the strongest bounds

on the production of gluinos and the squarks of the first two generations. Therefore it is

worth discussing scenarios where the spectrum of the third generation squarks is lighter

than that of the first two generations [28, 38]. Scenarios of this type have less tension with

naturalness only if the squark masses are introduced in a flavor non-universal way at the

scale where SUSY breaking is mediated to the SSM sector. In fact, squark mass splittings

induced by renormalization group evolution originate from the same top Yukawa interactions

that correct the Higgs potential. Therefore, in flavor-blind SUSY mediation models, large

splittings between squarks in the IR actually increases the fine-tuning in the Higgs potential.

In particular, at one loop one has,

�m2
H ' 3

⇣
m2

Q3
� m2

Q1,2

⌘
' 3

2

⇣
m2

U3
� m2

U1,2

⌘
, (11)

where the squark mass splittings pose a lower bound on the amount of fine-tuning. The

implications of the LHC results on this class of models will be further discussed in Section V.

general, the phenomenology of SUSY searches. However the modifications caused by an extended Higgs

sector are most important for searches looking at direct electroweak-ino production, which is beyond the

LHC capabilities with 1fb�1. We therefore neglect this issue in the rest of the paper.

11

Splitting via renormalization group does not help

Higgs fine-tuning = RGE mass splitting

1-loop, LLog, 
tanß moderate

Papucci, Ruderman, AW ’11

Splitting via RGE?
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→ Flavor non-trivial susy 
breaking!



What if first 2 generation squark not degenerate?
Mahbubani, Papucci, GP, Ruderman & Weiler (12). 
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(ũ, d̃)L, (c̃, s̃)L
M

8 dof
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(c̃, s̃)L, c̃R, s̃R

Everything degenerate         

M
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(ũ, d̃)L, (c̃, s̃)L

M

8 dof
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(ũ, d̃)L, (c̃, s̃)L

M

8 dof
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(c̃, s̃)L, c̃R, s̃R

Everything degenerate         

M
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(ũ, d̃)L, ũR, d̃R,
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ũR, c̃R

d̃R, s̃R

Split, but MFV !
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Degenerate Minimal Flavor Anarchy!

mSugra, CMSSM, 
pMSSM, … 

Think about beyond MFV susy searches. 
Sensitivities change dramatically...
Are the MC tools ready (NLO prod’?)?
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Composite Higgs



Matsedonskyi,Panico,Wulzer ; Redi,Tesi 12;  
Marzocca,Serone,Shu;

Light Higgs implies light fermionic top partners

where we have used the fact that the physical top mass is given by

m
t

=
|M t

1(0)|q
2⇧tL

0 (0)⇧̃tR
0 (0)

hs
h

c
h

i . (20)

The convergence of Eq. (19) requires the Weinberg sum-rule lim
p!1 M t

1(p) = 0. This can be

achieved with just one resonance, ����
M t

1(p)

M t

1(0)

���� =
m2

Q

p2 +m2
Q

, (21)

where Q represents here the lightest resonance, that can either be a 4 or a 1 of SO(4), since this

procedure does not depend on its quantum numbers. We then have

m2
h

� N
c

⇡2

m2
t

f 2
m2

Q

, (22)

that provides an upper bound for the resonance mass:

m
Q

. 700 GeV
⇣ m

h

125 GeV

⌘✓160 GeV

m
t

◆✓
f

500 GeV

◆
. (23)

To obtain a convergent result for the Higgs mass from the full top-quark contribution of Eq. (18),

we must impose the two pairs of Weinberg sum-rules, lim
p!1 pn⇧

tL,R

1 (p) = 0 (n = 0, 2), that require

at least two resonances, Q(1)
1 ⌘ Q1 and Q

(4)
1 ⌘ Q4. We obtain

⇧
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1 = |FL,R

Q4
|2 (m2
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where we have defined FL

Q4
FR ⇤
Q4

= ei✓|FL

Q4
FR ⇤
Q4

| and set by a field redefinition FL

Q1
FR

Q1
to be real.

Eq. (24) together with Eq. (20) gives 3
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where �F 2 = |FL

Q4
|2 � 2|FR

Q4
|2. It is easy to see that the second term in Eq. (25) is always positive

and that the first term minimizes for m
Q4 ! m

Q1 where the Higgs mass saturates the lower-bound

Eq. (22). It is also important to notice that, considering only the top contributions to the Higgs

potential, one obtains that ↵ in Eq. (15) is proportional to �F 2, meaning that the condition ↵ < �

requires small values for �F 2. In this limit, the Higgs mass comes entirely from the first term of

Eq. (25). In Figure 1 we show the value of the two lightest resonance masses for a Higgs mass

3A similar expression has also been obtained in the context of deconstructed MCHM [7].
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where �F 2 = |FL
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|2 � 2|FR
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|2. It is easy to see that the second term in Eq. (25) is always positive

and that the first term minimizes for m
Q4 ! m

Q1 where the Higgs mass saturates the lower-bound

Eq. (22). It is also important to notice that, considering only the top contributions to the Higgs

potential, one obtains that ↵ in Eq. (15) is proportional to �F 2, meaning that the condition ↵ < �

requires small values for �F 2. In this limit, the Higgs mass comes entirely from the first term of

Eq. (25). In Figure 1 we show the value of the two lightest resonance masses for a Higgs mass

3A similar expression has also been obtained in the context of deconstructed MCHM [7].
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where �F 2 = |FL

Q4
|2 � 2|FR
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|2. It is easy to see that the second term in Eq. (25) is always positive

and that the first term minimizes for m
Q4 ! m

Q1 where the Higgs mass saturates the lower-bound

Eq. (22). It is also important to notice that, considering only the top contributions to the Higgs

potential, one obtains that ↵ in Eq. (15) is proportional to �F 2, meaning that the condition ↵ < �

requires small values for �F 2. In this limit, the Higgs mass comes entirely from the first term of

Eq. (25). In Figure 1 we show the value of the two lightest resonance masses for a Higgs mass

3A similar expression has also been obtained in the context of deconstructed MCHM [7].
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To obtain a convergent result for the Higgs mass from the full top-quark contribution of Eq. (18),
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where �F 2 = |FL

Q4
|2 � 2|FR

Q4
|2. It is easy to see that the second term in Eq. (25) is always positive

and that the first term minimizes for m
Q4 ! m

Q1 where the Higgs mass saturates the lower-bound

Eq. (22). It is also important to notice that, considering only the top contributions to the Higgs

potential, one obtains that ↵ in Eq. (15) is proportional to �F 2, meaning that the condition ↵ < �

requires small values for �F 2. In this limit, the Higgs mass comes entirely from the first term of

Eq. (25). In Figure 1 we show the value of the two lightest resonance masses for a Higgs mass

3A similar expression has also been obtained in the context of deconstructed MCHM [7].
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where �F 2 = |FL
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|2 � 2|FR
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|2. It is easy to see that the second term in Eq. (25) is always positive

and that the first term minimizes for m
Q4 ! m

Q1 where the Higgs mass saturates the lower-bound

Eq. (22). It is also important to notice that, considering only the top contributions to the Higgs

potential, one obtains that ↵ in Eq. (15) is proportional to �F 2, meaning that the condition ↵ < �

requires small values for �F 2. In this limit, the Higgs mass comes entirely from the first term of

Eq. (25). In Figure 1 we show the value of the two lightest resonance masses for a Higgs mass

3A similar expression has also been obtained in the context of deconstructed MCHM [7].
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where �F 2 = |FL

Q4
|2 � 2|FR

Q4
|2. It is easy to see that the second term in Eq. (25) is always positive

and that the first term minimizes for m
Q4 ! m

Q1 where the Higgs mass saturates the lower-bound

Eq. (22). It is also important to notice that, considering only the top contributions to the Higgs

potential, one obtains that ↵ in Eq. (15) is proportional to �F 2, meaning that the condition ↵ < �

requires small values for �F 2. In this limit, the Higgs mass comes entirely from the first term of

Eq. (25). In Figure 1 we show the value of the two lightest resonance masses for a Higgs mass

3A similar expression has also been obtained in the context of deconstructed MCHM [7].
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Eq. (22). It is also important to notice that, considering only the top contributions to the Higgs
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requires small values for �F 2. In this limit, the Higgs mass comes entirely from the first term of

Eq. (25). In Figure 1 we show the value of the two lightest resonance masses for a Higgs mass

3A similar expression has also been obtained in the context of deconstructed MCHM [7].
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Eq. (22). It is also important to notice that, considering only the top contributions to the Higgs

potential, one obtains that ↵ in Eq. (15) is proportional to �F 2, meaning that the condition ↵ < �

requires small values for �F 2. In this limit, the Higgs mass comes entirely from the first term of

Eq. (25). In Figure 1 we show the value of the two lightest resonance masses for a Higgs mass

3A similar expression has also been obtained in the context of deconstructed MCHM [7].
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we must impose the two pairs of Weinberg sum-rules, lim
p!1 pn⇧
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1 (p) = 0 (n = 0, 2), that require

at least two resonances, Q(1)
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where �F 2 = |FL

Q4
|2 � 2|FR

Q4
|2. It is easy to see that the second term in Eq. (25) is always positive

and that the first term minimizes for m
Q4 ! m

Q1 where the Higgs mass saturates the lower-bound

Eq. (22). It is also important to notice that, considering only the top contributions to the Higgs

potential, one obtains that ↵ in Eq. (15) is proportional to �F 2, meaning that the condition ↵ < �

requires small values for �F 2. In this limit, the Higgs mass comes entirely from the first term of

Eq. (25). In Figure 1 we show the value of the two lightest resonance masses for a Higgs mass

3A similar expression has also been obtained in the context of deconstructed MCHM [7].
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Composite Higgs



e.g. Perelstein, Pierce, Peskin
Contino, Servant; Mrazek, Wulzer ;

 De Simone, Matsedonkyi, Rattazzi, Wulzer
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Figure 1: Typical single and pair production diagrams for T
5/3

and B for signals with two positively
charged leptons. We notice that for T

5/3

the leptons always comes from its decay, while for B they
originate in two di↵erent legs.

and correspond, when going to the unitary gauge and making use of the Equivalence Theorem, to vertices
with the longitudinal EW bosons. From the Lagrangian above it is easy to see that only the B and the
T

5/3

partners will be visible in the final state we want to study, which contains two hard and separated
same–sign leptons; the pair and single production diagrams are shown in fig. 1.

The couplings �B = Y ⇤
t sin 't cos 'q = yt/ tan'q and �T = Y ⇤

t sin 't = yt/ sin 'q are potentially
large since Y ⇤

t is large, as we have discussed, and for sure �T � yt ' 1. But they will actually be
bigger in realistic models where the amount of compositeness of qL, sin'q, cannot be too large. The bL

couplings have indeed been measured with high precision and showed no deviations from the SM. Large
bL compositeness would have already been discovered, for instance in deviations of the ZbLbL coupling
from the SM prediction. Generically, corrections �gL/gL ⇠ sin 'q

2 (v/f)2 [11] are expected which would
imply (for moderate tuning v/f /⌧ 1) an upper bound on sin 'q. It is however possible to eliminate such
contributions by imposing, as in the model of [8] (see also [22]), a “Custodial Symmetry for ZbLbL” [23]
which makes the correction reduce to �gL/gL ⇠ sin 'q

2 (mZ/⇤)2. Still, having not too big bL compositeness
is favored and further bounds are expected to come from flavor constraints in the B–meson sector. To be
more quantitative we can assume that sin'q < sin 't, i.e. that qL is less composite than the tR. This
implies sin'q <

p
(yt/Y ⇤

t ) and therefore �T >
p

(ytY ⇤
t ) & 2 and �B >

p
(ytY ⇤

t � y2

t ) &
p

3. We will
therefore consider �T,B couplings which exceed 2 and use the reference values of 2, 3, 4; smaller values for
both couplings are not possible under the mild assumption sin 'q < sin 't.

Our analysis, though performed in the specific model we have described, has a wide range of applica-
bility. The existence of the B partner is, first of all, a very general feature of the partial compositeness
scenario given that one partner with the SM quantum numbers of the bL must exist. Also, it interacts
with the tR as in eq. (4) due to the SU(2)L invariance of the proto–Yukawa term. The T

5/3

could on the
contrary not exist, this would be the case if for instance we had chosen representations Q = (2,1)

1/6

and
eT = (1,2)

1/6

for the partners (which is however strongly disfavored by combined bounds from �gb/gb and
T), or in the model of [11]. To account for these situations we will also consider the possibility that only
the B partner is present. 2 The existence of the T

5/3

is a consequence of the ZbLbL–custodial symmetry,
which requires that the B partner has equal T 3

L and T 3

R quantum number. This, plus the SO(4) invariance
of the proto–Yukawa, implies that the T

5/3

must exist and couple as in eq. (4). Our analysis, as we have
remarked, can also apply to Higgsless scenarios in both cases in which the custodian T

5/3

is present or
not. The results could change quantitatively in other specific models because for instance other partners
can be present and contribute to the same–sign dilepton signal, or other channels could open for the decay

2
In this case, our analysis perfectly applies to the model proposed in [11], where the tR is entirely composite, sin 't = 1,

and the coupling is large.
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Figure 4: In red dashed: the cross sections of pair production. In green and blue the single production of
the eT (in association with a b) and of the X5/3(in association with a t), respectively in model M15 and M45.
The point chosen in the parameter space is ⇠ = 0.2, c1 = 1 and y = 1. The value of c2 is fixed, at each value
of M , in order to reproduce the top quark mass.

It total, all the single-production processes are parameterized in terms of 5 universal coe�cient

functions �
W

±
t

, �
Zt

and �
W

±
b

. Notice that a possible �
Zb

vanishes because flavor-changing neutral

couplings are forbidden in the charge �1/3 sector as explained in the previous section. As such,

the single production of the B in association with a bottom quark does not take place. We have

computed the coe�cient functions �
W

±
t

and �
W

±
b

, including the QCD corrections up to NLO,

using the MCFM code [29]. To illustrate the results, we report in Table 3 the single production

cross-section with coupling set to unity, for di↵erent values of the heavy fermion mass, and for the 7

and 8 TeV LHC. The values in the table correspond to the sum of the cross sections for producing

the heavy fermion and its antiparticle, on the left side we show the results for tB production, on

the right one we consider the case of b eT . In our parametrization of eq.s (3.3) and (3.4) the cross-

sections in the table correspond respectively to �
W

+

t

+ �
W

�
t

and to �
W

+

b

+ �
W

�
b

. We see that the

production with the b is one order of magnitude larger than the one with the t, this is not surprising

because the t production has a higher kinematical threshold and therefore it is suppressed by the

steep fall of the partonic luminosities. The values in the table do not yet correspond to the physical

single-production cross-sections, they must still be multiplied by the appropriate couplings.

The last coe�cient function �
Zt

cannot be computed in MCFM and therefore to extract it

we used a LO cross section computed with MadGraph 5 [30] using the model files produced

with FeynRules package [31]. To account for QCD corrections in this case we used the k-factors

computed with MCFM for the tB production process.

In order to quantify the importance of single production we plot in figure 4 the cross-sections for

the various production mechanisms in our models as a function of the mass of the partners and for

a typical choice of parameters. We see that the single production rate can be very sizeable and that

it dominates over the QCD pair production already at moderately high mass. This is again due to

the more favorable lower kinematical threshold, as carefully discussed in Ref. [16].

Let us finally discuss the decays of the top partners. The main channels are two-body decays

to vector bosons and third-family quarks, mediated by the couplings in eq. (3.2). For the partners

of charge 2/3 and �1/3 also the decay to the Higgs boson is allowed, and competitive with the

others in some cases. This originates from the interactions of the partners with the Higgs reported

18

Production mechanism

see e.g. arXiv:1211.5663

http://arxiv.org/abs/arXiv:1211.5663
http://arxiv.org/abs/arXiv:1211.5663
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In order to quantify the importance of single production we plot in figure 4 the cross-sections for
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Let us finally discuss the decays of the top partners. The main channels are two-body decays

to vector bosons and third-family quarks, mediated by the couplings in eq. (3.2). For the partners

of charge 2/3 and �1/3 also the decay to the Higgs boson is allowed, and competitive with the
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Simplified models



5

The T5wg model, instead, has one gluino decaying to an intermediate neutralino that de-
cays to a photon and the LSP, and the second gluino decaying to a chargino that decays
to a W boson and the LSP. The neutralino and chargino masses are set to a common value
to allow an interpretation in models of gauge mediation. The intermediate neutralino is
labeled as the next-to-LSP (NLSP).

Table 1: Summary of the simplified models used in the interpretation of results.

Model Production Decay Visibility References
name mode

T1 egeg eg ! qqec0
1 All-Hadronic [12–14, 16]

T2 eq eq ⇤ eq ! qec0
1 All-Hadronic [12, 13, 16]

T5zz egeg eg ! qqec0
2, ec0

2 ! Zec0
1 All-Hadronic [13, 14]

Opposite-Sign Dileptons [25]
Multileptons [23]

T3w egeg eg ! qqec0
1 Single Lepton + Jets [17]

eg ! qq̄ec±, ec± ! W± ec0
1

T5lnu egeg eg ! qq̄ec±, ec± ! `nec0
1 Same-Sign Dileptons [19]

T3lh egeg eg ! qq̄ec0
1 Opposite-Sign Dileptons [21, 22]

eg ! qq̄ec0
2, ec0

2 ! `+`� ec0
1

T1bbbb egeg eg ! bbec0
1 All-Hadronic (b) [12, 14–16]

T1tttt egeg eg ! ttec0
1 All-Hadronic (b) [12, 14, 15]

Single Lepton + Jets (b) [18]
Same-Sign Dileptons (b) [19, 20]

Inclusive (b) [16]

T2bb eb eb⇤ eb ! bec0
1 All-Hadronic (b) [12, 16]

T6ttww eb eb⇤ eb ! tec�, ec� ! W� ec0
1 Same-Sign Dileptons (b) [20]

T2tt etet⇤ et ! tec0
1 All-Hadronic (b) [12, 16]

TChiSlepSlep ec± ec0
2 ec0

2 ! `± ˜̀⌥, ˜̀ ! `ec0
1 Multileptons [23, 24]

ec± ! n ˜̀±, ˜̀± ! `± ec0
1

TChiwz ec± ec0
2 ec± ! W± ec0

1, ec0
2 ! Zec0

1 Multileptons [23, 24]

TChizz ec0
2 ec0

3 ec0
2, ec0

3 ! Zec0
1 Multileptons [23, 24]

T5gg eg eg eg ! qqec0
2, ec0

2 ! gec0
1 Photons [26]

T5wg eg eg eg ! qqec0
2, ec0

2 ! gec0
1 Photons [26]

eg ! qq̄ec±, ec± ! W± ec0
1

The calculation of A⇥ e for each simplified model uses the PYTHIA [42] event generator with
the SUSY predictions for gluino, squark-antisquark, and neutralino and chargino pair produc-
tion. The primary particle masses are varied between 100 GeV and 1500 GeV. The theoretical
prediction for the production cross section is not needed to calculate [s ⇥ B]UL. However, it is
informative to compare the values of [s ⇥ B]UL with the production cross section expected in a
benchmark model. The selected benchmark is the CMSSM cross section prediction for gluino

SUSY
simplified
models

CMS-SUS-11-016



Simplified Models
→ more in Benjamin’s & Sezen’s presentation

Established tool, very useful in communicating
results (caveats!)

Used extensively in Susy searches, how about 
non-susy BSM?

Definition of the models should be as precise
as possible, including MC parameters, slha files, 
etc.



~ 20% agreement

unmatched with ME/PS matching

Importance of the MC

very bad close to deg.
region

Recast of efficiencies in gluino SiMo
with K. Sakurai, M. Papucci, L. Zeune



Simplified Models
→ more in Benjamin’s & Sezen’s presentation

Is the coverage sufficient? Missing SMS’s ? 

Can we close the loop (take SMS limits and apply 
to full models)?  Get information on missing 
models, low sensitivity spectra?



Simplified models in 
non-susy searches



Example: double dijet resonance search

with C → jj

stops at 350 GeV! starts at ~300 GeV

Model assumptions
drive the studied 
region … 

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO11016arXiv:1210.4826

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO11016
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO11016


Table 1: The 95% CL upper limit on σ ×A [pb] for the Gaussian model. The symbols mG and σG are,

respectively, the mean mass and standard deviation of the Gaussian.

mG σG/mG
(GeV) 7% 10% 15%

1500 0.12 0.16 0.16

1550 0.10 0.12 0.13

1600 0.088 0.10 0.11

1650 0.079 0.096 0.094

1700 0.074 0.083 0.089

1750 0.064 0.067 0.069

1800 0.057 0.057 0.066

1850 0.047 0.047 0.059

1900 0.037 0.042 0.055

1950 0.031 0.038 0.053

2000 0.029 0.036 0.048

2100 0.030 0.037 0.046

2200 0.030 0.033 0.039

2300 0.028 0.032 0.033

2400 0.024 0.027 0.029

2500 0.020 0.024 0.023

2600 0.018 0.020 0.019

2700 0.015 0.016 0.015

2800 0.013 0.013 0.012

2900 0.010 0.010 0.010

3000 0.007 0.008 0.009

3200 0.004 0.005 0.006

3400 0.004 0.004 0.004

3600 0.003 0.003 0.003

3800 0.002 0.002 0.002

4000 0.002 0.002 0.002
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NP signals. However, the effects of smooth deviations from QCD, such as those associated with contact

interactions, could be partially compensated by the background fitting function, and therefore, the m j j

analysis is used only to search for resonant effects.

jj
Reconstructed m

2000 3000 4000

E
ve

n
ts

-110

1

10

210

310

410

510

Data

Fit

 [GeV]
jj

Reconstructed m
2000 3000 4000

S
ig

n
ifi

ca
n
ce

-2

0

2

ATLAS Preliminary

-1 = 5.8 fbdt L
  ∫
 = 8 TeVs

Figure 1: The reconstructed dijet mass distribution with statistical uncertainties (filled points with error

bars) fitted with a smooth functional form (solid line). The bin-by-bin significance of the data-fit differ-

ence is shown in the lower panel, using positive values for excesses and negative values for deficits. If a

p-value greater than 50% is found the corresponding significance is not shown (see text).

The χ2 value of the fit is 13.8 for 16 DF. The lower panel of Fig. 1 shows the significance, in standard

deviations, of the difference between the data and the fit in each bin. The significance is purely statistical,

and based on Poisson distributions. The contents of a given bin are used to determine the p-value, the

probability of the background fluctuating higher than the observed excess or lower than the observed

deficit. The p-value is transformed into a significance in terms of an equivalent number of standard

deviations (the z-value) [33]. Where there is an excess (deficit) in data in a given bin, the significance is

plotted as positive (negative). In certain cases, individual bins are not plotted. 2

To determine the degree of consistency between data and the fitted background, the p-value of the

fit is obtained by calculating the χ2 value from the data, and comparing this result to the χ2 distribution

obtained from pseudoexperiments, as described in a previous publication [22]. The resulting p-value is

0.38, showing that there is reasonable agreement between the data and the functional form.

As a more sensitive test, the BumpHunter algorithm [34, 35] is used to establish the presence or

absence of a resonance in the dijet mass spectrum, as described in greater detail in previous ATLAS

publications [22, 23]. Starting with a two-bin window, the algorithm increases the signal window and

shifts its location until all possible bin ranges, up to half the mass range spanned by the data, have been

2 In mass bins with a small expected number of events, where the observed number of events is similar to the expectation,

the Poisson probability of a fluctuation at least as high (low) as the observed excess (deficit) can be greater than 50%, as a result

of the asymmetry of the Poisson distribution. Since these bins have too few events for the significance to be meaningful, the

bars are not drawn for them.

4

http://cds.cern.ch/record/1460400/files/ATLAS-CONF-2012-088.pdf

Dijet resonance search

http://cds.cern.ch/record/1460400/files/ATLAS-CONF-2012-088.pdf
http://cds.cern.ch/record/1460400/files/ATLAS-CONF-2012-088.pdf


Simple to recast… 

1. Run MC of your model, get geometric acceptance
2. Cut around resonance: 
3. Extract acceptance, look up  

 

...

�95 = �95(m,�)
0.8m < mjj < 1.2m

1305.3818

http://arxiv.org/abs/1305.3818
http://arxiv.org/abs/1305.3818


Simple to recast… 

1. Run MC of your model, get geometric acceptance
2. Cut around resonance: 
3. Extract acceptance, look up  

 

...

�95 = �95(m,�)
0.8m < mjj < 1.2m

write a paper!

1305.3818

http://arxiv.org/abs/1305.3818
http://arxiv.org/abs/1305.3818


60% of the time, it works every time.



General Framework for 
Resonance Searches?

Provide a simplified model …  use spin1 toy ? 

Describes resonances in

and present results as limit (or excess) x-sec:

Model-independent, easy to recast, very general!

l+l�, (W+W�, ZZ, ZW+), tt̄, jj, jjj, . . .

�95 = �95(m,�)



Possible discussions here:

Experimental issues? Can the dijet approach 
straightforwardly extended?

Theoretical issues? Does it map onto the most 
interesting models? Can the specific resonance 
model  be important? 

Provide a MC implementation?



Top partner simplified models

•  Stop simplified models (beyond               , polariz’)
•  Fermionic top partner simplified models? Status of 
the searches? Single prod’? Boosted search at LHC14?

t̃1 ! t�̃0



Spin 1 resonances



Strong EWSB and spin1

WLWL ! WLWL



DY prod’ of SO(5)/SO(4)  
spin 1 resonances

DY a bit more model-dependent

Attempt a classification, cast in simplified model

Minimal coupling to 1st/2nd gen’ fermions
3rd generation coupling might be different

Decay to Vh, VV, tt, tb

⇠ g/g⇢



Generic searches? 



All of our ideas might be wrong… 

Exhibit 1:
Susy expectation
ca. 1984

MW

L.Hall GGI ’12



∃ Useful way to do a model-independent 
search? 

All of our ideas might be wrong… 

Exhibit 2:
Imagine a world in which your favorite model hasn’t
been thought of yet (susy?)… 







LHC14 preparations
boosted objects?

other issues?





From the wiki:










