gg – WW at higher orders in the high-mass region for signal-background interference

M. Bonvini, FC, K. Melnikov, S. Forte, G. Ridolfi arXiv:1304.3053

Interference in perturbative QCD

 $\sigma_{Hi} \equiv \sigma_{tot} - \sigma_{bq}$

LO

00000000

NNN W

For a 600 GeV Higgs: $\sigma_{Hi}/\sigma_H \sim 1.1 - 1.3$

(After Higgs-selection cuts: effect reduced, but still there)

Interference in perturbative QCD NLO

 $\sigma_H^{\rm NLO}/\sigma_H^{\rm LO}\sim 2$

Unknown!

For the background, already NLO is (far) beyond our technical reach

Interference in perturbative QCD NNLO

 $\sigma_{H}^{\rm NNLO}/\sigma_{H}^{\rm NLO}\sim 1.2$

out of question

Large signal K-factor → LO analysis may be unreliable
Unknown K-factor for the background

Can we estimate corrections to the background?

(N)NLO in the soft approximation

We are interested in the production of a high invariant mass system in the gluon-gluon channel

The cross section is dominated by the soft $z \sim 1$ region

(N)NLO in the soft approximation

Enhanced terms: emission of soft gluons

00000000

Process-dependent

Bulk of the result, universal Compute as Stefano discussed this morning Assign uncertainty to the approximation (reg. terms)

Process-dependent part: rough estimate

A rough estimate: $m_W^2 \ll Q^2 \ll m_t^2 \sim m_b^2$

In this limit, the result can be obtained via the equivalence theorem and an effective Lagrangian

We take the result in this limit as reference value $\bar{c}_{1,2}$ and compute its impact by varying $-5 \ \bar{c}_{1,2} < c_{1,2} < 5 \ \bar{c}_{1,2}$

Results for the interference:

- Construct our improved soft collinear approximation for $\sigma_{Hi} \equiv \sigma_{tot} \sigma_{bg}$
- For the Higgs, use the known (N)NLO deltafunction coefficients
- For the background, use the reference value in the limit $m_W^2 \ll Q^2 \ll m_t^2 \sim m_b^2$
- To evaluate the uncertainty of the approximation
 - subleading terms in the soft approximation
 - vary $-5 \ \overline{c}_{1,2} < c_{1,2} < 5 \ \overline{c}_{1,2}$ for the background
 - sum the two uncertainties in quadratures

Validation: Higgs-only signal

Inclusive K-factors

	$\sqrt{s} = 8 \text{ TeV}$			$\sqrt{s} = 13 \text{ TeV}$		
	NLO	NNLO		NLO	NNLO	
exact	2.150	2.78		2.074	2.67	
soft-collinear	2.19 ± 5	$2.82{\pm}12$		2.13 ± 6	2.73 ± 12	

Results for the interference

Inclusive K-factors: no cuts

	$\sqrt{s} = 8 \text{ TeV}$			$\sqrt{s} = 13 \text{ TeV}$			
BERNED	LO	NLO	NNLO	LO	NLO	NNLO	
σ_{H}	0.909	1.99(5)	2.6(1)	3.77	8.1(2)	10.3(5)	
σ_{Hi}	1.188	2.6(1)	3.4(3)	4.56	9.7(4)	12.5(9)	
$\sigma_{H}/\sigma_{H}^{ m LO}$		2.19(5)	2.8(1)		2.14(5)	2.7(1)	
$\sigma_{Hi}/\sigma_{Hi}^{ m LO}$	<u> </u>	2.2(1)	2.9(2)		2.13(9)	2.8(2)	

Differential distributions

We believe that the interference K-factor can be estimated to $\mathcal{O}(10\%)$ accuracy The interference K-factor is very similar to the (gg) Higgs K-factor

Results for the interference Inclusive K-factors: Higgs-based cuts

	$\sqrt{s} = 8 \text{ TeV}$			$\sqrt{s} = 13 \text{ TeV}$			
	LO	NLO	NNLO	LO	NLO	NNLO	
σ_H	0.379	0.83(2)	1.07(5)	1.55	3.29(8)	4.2(2)	
σ_{Hi}	0.427	0.93(3)	1.20(7)	1.66	3.5(1)	4.5(2)	
$\sigma_{H}/\sigma_{H}^{ m LO}$		2.19(5)	2.8(1)	-	2.13(5)	2.7(1)	
$\sigma_{Hi}/\sigma_{Hi}^{ m LO}$		2.19(7)	2.8(2)		2.12(6)	2.7(1)	

Differential distributions

We believe that the interference K-factor can be estimated to $\mathcal{O}(10\%)$ accuracy The interference K-factor is

very similar to the (gg) Higgs K-factor

Conclusions

We believe we can estimate corrections to the interference to better than 10%

To this accuracy, the interference K-factors are very similar to the signal-only gg→H→WW K-factors, both for inclusive cross sections and with Higgs-based selection cuts

(gg-multiplicative hypothesis)

The soft-collinear approximation only depends on the color flow \rightarrow similar results expected for the ZZ channel