DiHiggs Phenomenology

it depends on what you are asking for

- trilinear Higgs self-coupling
- extra heavy resonances (MSSM, Higgs portals,...)
 - unboosted $m_H \sim 2 m_h$
 - (un)boosted $m_H \gg 2m_h$ e.g. [Bowen, Wells, Cui `96]
- composite Higgs, top partners
 - new interactions
 - enhancement at large p_T

Which final states are accessible?

$$= \lambda_{\rm SM} = g^2 m_h^2 |m_W^2|$$
$$= \lambda_{\rm SM} = \frac{g^2 m_h^2}{2} m_W^2$$
$$-\mathcal{L} \supset \frac{1}{2} m_h^2 h^2 + \sqrt{\frac{\eta}{2}} m_h h^3 + \frac{\eta}{4} h^4$$
$$-g m_V V^2 h - \frac{m_f}{v} \bar{f} f h$$
$$-\frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a\,\mu\nu} \log(1+h/v)$$

$$-\mathcal{L} \supset \frac{1}{2}m_h^2h^2 + \sqrt{\frac{\eta}{2}}m_hh^3 + \frac{\eta}{4}h^4$$
$$-gm_V V^2h - \frac{m_f}{v}\bar{f}fh$$
$$-\frac{\alpha_s}{12\pi}G^a_{\mu\nu}G^{a\,\mu\nu}\log(1+h/v)$$

$$-\mathcal{L} \supset \frac{1}{2}m_h^2h^2 + \sqrt{\frac{\eta}{2}}m_hh^3 + \frac{\eta}{4}h^4 \longrightarrow \frac{1}{2}m_h^2h^2 + \sqrt{\frac{\eta}{2}}m_hh^3 + \frac{\eta}{4}h^4 \longrightarrow \frac{1}{2}m_h^2h^2 + \sqrt{\frac{\eta}{2}}m_hh^3 + \frac{\eta}{4}h^4 \longrightarrow \frac{1}{2}m_h^2h^2 + \frac{1}{2}m_h^2h^$$

$$-\mathcal{L} \rightarrow \frac{1}{2} m_h^2 h^2 + \sqrt{\frac{\eta}{2}} m_h h^3 + \frac{\eta}{4} h^4 \longrightarrow \frac{\eta}{production!} \text{need at least dihiggs}}{-gm_V V^2 h - \frac{m_f}{v} \bar{f} f h} \rightarrow \frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a\,\mu\nu} \log(1 + h/v)$$
$$= -\frac{\alpha_s}{12\pi v} G^a_{\mu\nu} G^{a\,\mu\nu} h + \frac{\alpha_s}{24\pi v^2} G^a_{\mu\nu} G^{a\,\mu\nu} h^2 + \dots$$

$$-\mathcal{L} \rightarrow \frac{1}{2} m_h^2 h^2 + \sqrt{\frac{\eta}{2}} m_h h^3 + \frac{\eta}{4} h^4 \longrightarrow \frac{\eta}{p roduction!} \frac{1}{2} m_V V^2 h - \frac{m_f}{v} \bar{f} f h$$

$$- \frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a \ \mu\nu} \log(1 + h/v)$$

$$= -\frac{\alpha_s}{12\pi v} G^a_{\mu\nu} G^{a \ \mu\nu} h + \frac{\alpha_s}{24\pi v^2} G^a_{\mu\nu} G^{a \ \mu\nu} h^2 + \dots$$

$$-\mathcal{L} \rightarrow \frac{1}{2} m_h^2 h^2 + \sqrt{\frac{\eta}{2}} m_h h^3 + \frac{\eta}{4} h^4 \longrightarrow \frac{\eta}{p roduction!} \frac{1}{2} m_V V^2 h - \frac{m_f}{v} \bar{f} f h$$

$$- \frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a \ \mu\nu} \log(1 + h/v)$$

$$= -\frac{\alpha_s}{12\pi v} G^a_{\mu\nu} G^{a \ \mu\nu} h + \frac{\alpha_s}{24\pi v^2} G^a_{\mu\nu} G^{a \ \mu\nu} h^2 + \dots$$

• massive quark loops are resolved for $p_{T,h} \gtrsim m_t$ forget about EFT

[Plehn, Spira, Zerwas `96] [Baur, Plehn, Rainwater `03, `04]

 NLO QCD corrections are large ~2

[Dawson, Dittmaier, Spira `98] [Grigo et al. `13] [de Florian et al `13]

• good a priori sensitivity to λ for $m_h = 125 \text{ GeV}$

for dihiggs production this becomes $s = (p_{h,1} + p_{h,2})^2 = 4m_t^2$

sensitivity to the trilinear coupling for $m_h \simeq 125 \text{ GeV}$ is in the boosted regime

Self-coupling measurements at the hadron level

• We're dealing with small xsections, hence need to look for large BRs for theoretical improvements: $h \rightarrow b\bar{b}, W^+W^-, \tau^+\tau^-$

$b\bar{b}\gamma\gamma$ (fairly standard)

[Baur, Plehn, Rainwater `12] European Strategy report

Following this selection, a signal yield of approximately 12 events is obtained, with the irreducible $\gamma\gamma b\overline{b}$ background sample of more than 300,000 events completely suppressed and the $b\overline{b}H$ contribution to a negligible level. The only significant background remaining is $t\overline{t}H$, contributing approximately 18 events. This corresponds to a *S*/*B* ratio of around 0.7 ($\frac{S}{\sqrt{B}} = 2.8$).

channels

 $b\bar{b}W^+W^-$ (fairly standard)

[Dolan, CE, Spannowsky `12] and European Strategy report

	$\xi = 0$	$\xi = 1$	$\xi = 2$	$b\bar{b}WW$	ratio to $\xi = 1$
cross section before cuts	59.48	28.34	13.36	877500	$3.2 \cdot 10^{-5}$
1 isolated lepton	7.96	3.76	1.74	254897	$1.5 \cdot 10^{-5}$
MET + jet cuts	1.54	0.85	0.44	66595.7	$1.2 \cdot 10^{-5}$
hadronic W reconstruction	0.59	0.33	0.17	38153.3	$0.9\cdot 10^{-5}$
kinematic Higgs reconstruction	0.028	0.017	0.007	205.1	$8.3 \cdot 10^{-5}$

channels

 $b\bar{b}b\bar{b}$ (boosted)

[Dolan, CE, Spannowsky `12]

	$\xi = 0$	$\xi = 1$	$\xi = 2$	$b\bar{b}b\bar{b}$ [QCD]	$b\bar{b}b\bar{b}$ [ELW]	$b\bar{b}b\bar{b}$ [QCD/ELW]	ratio to $\xi = 1$
cross section before cuts	59.48	28.42	13.36	21165	16.5	160.35	$1.3 \cdot 10^{-3}$
trigger+no leptons	17.93	10.21	5.31	5581.2	8.0	38.85	$1.8 \cdot 10^{-3}$
fatjet cuts	13.73	8.23	4.50	4761.0	7.50	31.65	$1.7 \cdot 10^{-3}$
first Higgs rec $+ 2b$	1.55	1.02	0.60	235.22	0.75	1.32	$4.2 \cdot 10^{-3}$
second Higgs rec $+ 2b$	0.137	0.094	0.059	9.72	0.011	0.050	$9.6 \cdot 10^{-3}$

 $b\bar{b}\tau^+\tau^-$ (boosted)

[Dolan, CE, Spannowsky `12] [Baglio, Djouadi,Gröber, Mühlleitner, Quevillon, Spira `12]

	$\xi = 0$	$\xi = 1$	$\xi = 2$	$b\bar{b} au au$	$b\bar{b}\tau\tau$ [ELW]	$b\bar{b}W^+W^-$	ratio to $\xi = 1$
cross section before cuts	59.48	28.34	13.36	67.48	8.73	873000	$3.2 \cdot 10^{-5}$
reconstructed Higgs from τs	4.05	1.94	0.91	2.51	1.10	1507.99	$1.9 \cdot 10^{-3}$
fatjet cuts	2.27	1.09	0.65	1.29	0.84	223.21	$4.8 \cdot 10^{-3}$
kinematic Higgs reconstruction $(m_{b\bar{b}})$	0.41	0.26	0.15	0.104	0.047	9.50	$2.3 \cdot 10^{-2}$
Higgs with double b -tag	0.148	0.095	0.053	0.028	0.020	0.15	0.48

going beyond

phase space in inclusive dihiggs production is limited due to small phase space for the back-to-back configuration at rather small invariant masses $2m_t$

	$\xi = 0$	$\xi = 1$	$\xi = 2$	$b\bar{b} au^+ au^- j \ b\bar{b}$	$\tau^+ \tau^- j$ [ELW]	$t\bar{t}j$	ratio to $\xi = 1$
cross section before cuts	6.45	3.24	1.81	66.0	1.67	106.7	$1.9 \cdot 10^{-2}$
$2 \ au m s$	0.44	0.22	0.12	37.0	0.94	7.44	$4.8 \cdot 10^{-3}$
Higgs rec. from taus + fatjet cuts	0.29	0.16	0.10	2.00	0.150	0.947	$5.1 \cdot 10^{-2}$
kinematic Higgs rec.	0.07	0.04	0.02	0.042	0.018	0.093	0.26
$2b + hh$ invariant mass $+ p_{T,j}$ cut	0.010	0.006	0.004	< 0.0001	0.0022	0.0014	1.54

going beyond

phase space in inclusive dihiggs production is limited due to small phase space for the back-to-back configuration at rather small invariant masses $2m_t$

open up the phase space by accessing small invariant di-Higgs masses in collinear configurations:

	$\xi = 0$	$\xi = 1$	$\xi = 2$	$b\bar{b}\tau^+\tau^-j\ b\bar{b}\tau$	$\tau^+ \tau^- j$ [ELW]	$t ar{t} j$	ratio to $\xi = 1$
cross section before cuts	6.45	3.24	1.81	66.0	1.67	106.7	$1.9 \cdot 10^{-2}$
$2 \ au \mathrm{s}$	0.44	0.22	0.12	37.0	0.94	7.44	$4.8 \cdot 10^{-3}$
Higgs rec. from taus $+$ fatjet cuts	0.29	0.16	0.10	2.00	0.150	0.947	$5.1 \cdot 10^{-2}$
kinematic Higgs rec.	0.07	0.04	0.02	0.042	0.018	0.093	0.26
$2b + hh$ invariant mass $+ p_{T,j}$ cut	0.010	0.006	0.004	< 0.0001	0.0022	0.0014	1.54