SM: Loops and Multi-legs Theoretical Introduction

Nigel Glover IPPP Durham

SM co-convenors Guenther Dissertori, Stefan Dittmaier, Joey Huston

NLO - the new standard

- ✓ A lot of progress, and the "best" solution is still to emerge. In the meantime, there are public codes with NLO capability that could only be dreamed of a few years ago.
- √ See http://indico.cern.ch/conferenceOtherViews.py?view=standard&confld=212260 for more details.

SHERPA Process

Process	BlackHat	OpenLoops	
jets	≤ 3 ≤ 3 ≤ 2 ≤ 4	_	≤ 4
γ +jets	≤ 3	≤ 2	≤ 3
$\gamma\gamma$ +jets	≤ 2	_	≤ 2
V+jets	≤ 4	≤ 3	≤ 3
$V + b\bar{b}$ +jets	_	≤ 1	≤ 1
VV ′+jets		≤ 2	≤ 2
$V\gamma$ +jets	_	<pre></pre>	≤ 4 ≤ 3 ≤ 2 ≤ 3 ≤ 1 ≤ 2 ≤ 2
$W^{\pm}W^{\pm}_{qq}$	_	0	0
VV'V''	_	_	≤ 1
$t\bar{t}+$ jets	_	≤ 1	≤ 1
$t\bar{t} + V$ +jets	_	_	≤ 1
tb [†]	_	_	≤ 1
tj [†]	_	_	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
tW [†]	_	_	
h+jets	≤ 2	≤ 2	_
WBF: hqq'	_	_	≤ 1
VH	-	_	≤ 1
tīth	_	_	0
$gg \rightarrow 4\ell$	_	0	0

NLO - the new standard

 A lot of progress, and the "best" solution is still to emerge. In the meantime, there are public codes with NLO capability that could only be dreamed of a few years ago.

Process	BlackHat	GoSam	OpenLoops
jets	\leq 3 \\ \leq 3 \\ \leq 2 \\ \leq 4 \\ \tag{-1}	_	≤ 4
$\gamma+$ jets	≤ 3	<pre></pre>	<pre></pre>
$\gamma\gamma+$ jets	≤ 2	_	≤ 2
$V+{\sf jets}$	≤ 4	≤ 3	S 3
$V+bar{b}+{\sf jets}$	_	≤ 1	≤ 1
<i>VV</i> ∕ +jets	 ≤ 2	≤ 2	≤ 2
$V\gamma$ +jets	_	≤ 2	≤ 2
$W^{\pm}W^{\pm}_{qq}$	_	0	0
$\begin{array}{c c} w^{\pm}w^{\pm}_{qq} \\ vv'v'' \end{array}$	_	_	≤ 1
<i>t</i> t +jets	_	≤ 1	≤ 1
$t\overline{t} + V$ +jets	_		≤ 1
tb [†]	_	_	≤ 1
tj [†]	_	_	≤ 1
tW [†]	_	_	$ \begin{array}{c c} & \leq 1 \\ & = 1 \\ & \leq 1 \\ & = 0 \end{array} $
<i>h</i> +jets	≤ 2	≤ 2	_
WBF: hqq'	_	_	≤ 1
VH	_	_	≤ 1
tīth	_		0
$gg \rightarrow 4\ell$	_	0	0

DI- -I-II-+

Multileg codes

- Many competing codes with different strengths and approaches and complementary results
- Highest multiplicity @ NLO
- MADLOOPS+MADGRAPH RECOLA

Special mention:

Rocket

HELAC/CutTools

- BlackHat +SHERPA $(pp \rightarrow W + 5 jets)$
- $(pp \rightarrow 5 jets)$ NJET + SHERPA

- Broadest applicability @ NLO
 - GoSam + SHERPA/MADGRAPH
 - OpenLoops + SHERPA

- Resummation of high energy logs
 - HEJ

BlackHat

Daniel Maître

with Z. Bern, L. Dixon, F. Febres Cordero, S. Höche, H. Ita,

D. Kosower, K. Ozeren

BlackHat Capabilities:

Virtual matrix elements for

- W + <=5 jets
- -Z + <= 4 jets
- Pure QCD <=4 jets</pre>
- Photon + <=3 jets</pre>

BlackHat: most recent development

W+5 jets with Sherpa arXiv:1304.1253

BlackHat at Les Houches

- BLHA second version
- Ntuples for 8 TeV
- Comparison with HEJ

• ...

• People in Les Houches: Daniel Maître

NJet for full colour pp $\rightarrow \leq 5j$ arXiv:1209.0100

- •uses NGluon for multi-parton primitive amplitudes
- Accuracy estimates via BLHA
- Public C++ code from http://www.bitbucket.org/njet/njet

Badger, Biedermann, Uwer, Yundin

Applications with NJET+SHERPA

Preliminary results
 for pp → 5j arXiv:1209.0100

c.f. BLACKHAT arXiv:1112.3940

NJET at Les Houches

- Discuss extensions and future of BLHA interface
- Validating and comparing NLO tools (pp → W+3j?)
 - NLO with different MCs e.g. Sherpa, MC@NLO, ...
 - Performance of integration strategies e.g. Leading Colour, helicity sampling etc.
 - Real Radiation for high multiplicity, FKS vs. Catani-Seymour?
- People in Les Houches: Simon Badger, Valery Yundin

GoSam

G. Cullen, H. van Deurzen, N. Greiner, G.Heinrich, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, T. Peraro, J. Reichel, J. Schlenk, J. F. von Soden-Fraunhofen, F. Tramontano

http://gosam.hepforge.org

- GoSam status:
 - QCD fully automated
 - massive internal/external particles, also complex masses
 - can also do EW, BSM
 - (import of model les in UFO (Universal FeynRules Output) or LANHEP format)
 - rational part for free (no need for additional Feynman rules)
 - support for effective vertices/spin-two particles
- GoSam code development: version 2.0 coming out this year
 - more compact code, much faster runtimes
 - extended features, easier installation

Interfacing GoSam: examples

Gosam	Monte Carlo program		
$b\bar{b}b\bar{b}$	x		
$W^+W^- + 2$ jets (including massive top)	x		
$ ilde{\chi}_1^0 ilde{\chi}_1^0 + jet$ (SUSY QCD corr.)	x		
$\gamma\gamma+{\sf jet}$	x		
$W^+W^-bar b$ (full off-shell effects)	x		
H+0,1,2 jets (gluon fusion)	x		
$W^{\pm} (\to e \nu_e) + 0, 1, 2, 3 \text{jets}$	x		
$Z/\gamma^* (\to e^+e^-) + 0, 1, 2 \text{ jets}$	x		
$W^{\pm}\left(ightarrow e u_{e} ight)+bar{b}$ (massive b's)	x		
$W^+ (\rightarrow \mu^+ \nu_\mu) + W^- (\rightarrow e^- \bar{\nu}_e)$	x		
$W^{+}(\to \mu^{+}\nu_{\mu}) + W^{+}(\to e^{+}\nu_{e}) + 2 \text{ jets}$	x		
$t\overline{t} + 0, 1 \text{ jets}$	x		
$t\overline{t}H + 0, 1 \text{ jets}$	x		
HV+0,1 jet (V=W,Z + decay)	X		

x: MadDipole/MadGraph/Madevent, x: Sherpa, x: Powheg Box

Interfacing GoSam: examples

$$W^+W^-b\bar{b}$$

H+2 jets

GoSam at Les Houches

- update of BLHA: achieve an Accord by the end of the workshop and possibly start implementing and validating it on a specific example
- discuss with experimentalists about projects (e.g. on prompt photons, Higgs property measurements, EW corrections, anomalous couplings, multi-leg NLO + shower matching)

• People in Les Houches: Gudrun Heinrich, Gionata Luisoni, Johann von Soden-Fraunhofen

OpenLoops

Tools

- Loop integrals: Collier [Denner, Dittmaier, Hofer]
- 1-loop amplitudes: OpenLoops [Cascioli, Maierhofer, Pozzorini]
- Features and strengths of OpenLoops+Collier
 - NLO QCD for any 2 → 2, 3, 4, (5) SM process with complex masses, off-shell effects
 - fast code generation, compact code
 - fast loop amplitudes (thanks to open-loops algorithm)
 - high numerical stability (thanks to Denner-Dittmaier reduction)

OpenLoops

- Process library 1.0 (to be published in 2013, already available to ATLAS/CMS MCWGs)
 - many SM processes with (multi) bosons, photons, jets, heavy quarks, Higgs

W/Z	γ	jets	HQ pairs	single-top	Higgs
V+3 <i>j</i>	$\gamma+3j$	3(4) <i>j</i>	$t\bar{t}{+}1j$	tb+1j	(H+2j)
VV+2j	$\gamma\gamma+1(2)j$		$t\bar{t}V+0(1)j$	t+1(2)j	VH+1j
$gg \rightarrow VV + 1j$	$V_{\gamma+2j}$		$b\bar{b}V+0(1)j$	tW + 0(1)j	t₹H
VVV+1j			, ,	, ,	qq o Hqq + 0(1)j

lower jet multiplicities implicitly understood

OpenLoops applications

Breaking 1-loop multi-leg speed bottleneck

Thorough modelling of nontrivial background

CPU cost grows linearly and remains low up to O(10⁴) loop diagrams

Irreducible $e\mu+0,1$ jets bkg to $H \rightarrow WW$ analysis: off-shell resonances with complex masses, interferences, loop-induced gg-contributions, jet vetoes/bins . . .

OpenLoops at Les Houches

- **leptons+neutrinos+jets** final states: theory simulations, applications to experimental analysis (with Sherpa, experimentalists)
- heavy-flavour final states (e.g. ttH(bb) signal and backgrounds): theory simulations, applications to experimental analysis (with Sherpa, experimentalists)
- technical aspects of tensor-integral reduction (with S. Dittmaier)
- systematic approaches to interface Collier+OpenLoops+Sherpa to experimental analyses (ATLAS/CMS MC generation, analysis groups)
- People in Les Houches: Fabio Cascioli (3-12 June)

Stefano Pozzorini (10-12 June)

High Energy Jets

- HEJ calculates the leading real and virtual corrections to wide-angle QCD emissions to all orders in the coupling (and with high-multiplicity tree-level ME corrections)
- Production of **multiple jets**, also when of similar transverse momentum (i.e. no strong pt ordering required)
- Fully flexible partonic MC implementation publicly available at http://cern.ch/hej
- (LH event files, rivet analyses, LHAPDF,...)
- See arXiv: 0908.2786, 1101.5394, 1206.6763

High Energy Jets

 Speciality: The dominant radiative corrections at large invariant mass or large rapidity intervals of jets (very relevant for H+dijets)

HEJ at Les Houches

- Comparisons between W+jets and H+jets with NLO for LHC and beyond (with Snowmass)
- Discuss strategies for Hjj gluon fusion suppression, and for extracting CP properties of Higgs-gluon coupling
- Further strategies for stress-testing theoretical descriptions in difficult (but important) regions of phase space
- Progress towards HEJ+NLO
- People in Les Houches: Jeppe Andersen, Jenni Smillie

NNLO calculations for $2 \rightarrow 2$ processes

$$d\sigma = \sum_{i,j} \int \frac{d\xi_1}{\xi_1} \frac{d\xi_2}{\xi_2} f_i(\xi_1, \mu_F^2) f_j(\xi_2, \mu_F^2) d\hat{\sigma}_{ij}(\alpha_s(\mu_R), \mu_R, \mu_F)$$

$$d\hat{\sigma}_{ij} = d\hat{\sigma}_{ij}^{LO} + \left(\frac{\alpha_s(\mu_R)}{2\pi}\right) d\hat{\sigma}_{ij}^{NLO} + \left(\frac{\alpha_s(\mu_R)}{2\pi}\right)^2 d\hat{\sigma}_{ij}^{NNLO} + \mathcal{O}(\alpha_s^3)$$

Processes of interest

$$\checkmark$$
 $pp \rightarrow 2$ jets

$$\checkmark pp \rightarrow \gamma + \text{jets}$$

$$\checkmark pp \rightarrow \gamma \gamma$$

$$\checkmark pp \rightarrow V + \text{jet}$$

$$\checkmark pp \rightarrow t\bar{t}$$

$$\checkmark pp \rightarrow VV$$

$$\checkmark pp \rightarrow H + \text{jet}$$

√ ...

Massively reduced theoretical error

Anastasiou, Dixon, Melnikov, Petriello (04)

Diphoton production at NNLO (2γNNLO)

Catani, Cieri, de Florian, Ferrera, Grazzini arXiv:1110.2375

- First exclusive NNLO in pp collisions with two final state particles
- Fully exclusive NNLO description (direct contribution) for $pp \rightarrow \gamma\gamma$
- No fragmentation contribution → Frixione Isolation

2γNNLO results

2γNNLO results

- Reduction of discrepancies between NLO description and data
- Sizeable NNLO corrections to the γγ mass distribution in kinematical regions related to Higgs boson searches

40-55% effect over NLO

- NNLO very large away from back-to-back configuration (effectively NLO)
- At NNLO starts to reliably predict values of cross sections in all kinematical regions (with very few exceptions; e.g pTγγ → 0)
 All channels opened

Higgs plus jet at NNLO

Boughezal, Caola, Melnikov, Petriello and Schulze arXiv:1302.6216

Current status:

- total cross section in a gluon-only theory
- Realistic jet algo, kT with R=0.5, pT > 30 GeV
- Partonic cross-section profiled → very easy to study
- scale and PDFs dependence

Ongoing work:

- run with ATLAS and CMS setup
- qg channel, distributions (Higgs pT, leading jet pT, number of jets)
 [results by the end of the year?]

H+j @ NNLO (gg only)

 μ [GeV]

Setup:

- m_H = 125 GeV
- NNPDF set
- kT algo, R=0.5,
 pT > 30 GeV

$$m_H/2 < \mu < 2m_H$$

$$\sigma_{\text{LO}}(pp \to Hj) = 2713^{+1216}_{-776} \text{ fb},$$
 $\sigma_{\text{NLO}}(pp \to Hj) = 4377^{+760}_{-738} \text{ fb},$
 $\sigma_{\text{NNLO}}(pp \to Hj) = 6177^{-204}_{+242} \text{ fb}.$

Large K-factors $\sigma_{NLO}/\sigma_{LO} = 1.6$

 $\sigma/_{NNLO}/\sigma_{NLO} = 1.3$

Significantly reduced O(4%) scale dependence

pp → di-jets (gluons only)

Setup:

- jets identified with the anti-kT jet algorithm
- jets accepted at rapidities

- leading jet with transverse momentum pt > 80 GeV
- subsequent jets required to have at least pt > 60 GeV
- MSTW2008nnlo PDF
- dynamical factorization and renormalization scales equal to the leading jet pT

$$(muR = muF = mu = pT1)$$

Gehrmann, Gehrmann-De Ridder, NG, Pires

arXiv:1301.7310

pp → di-jets (gluons only)

Double differential distribution R=0.7

double differential k-factors

- ► NNLO result varies between 25% to 12% with respect to the NLO cross section
- similar behaviour between the rapidity slices

bb → H

Buehler, Herzog, Lazopoulos, Mueller arXiv:1204.4415

bb->H rapidity distribution

(m_h=125GeV, LHC@8TeV)

 bb->H double differential distribution in pT and rapidity

(m_h=125GeV, LHC@8TeV)

NNLO to do in Les Houches

Phenomenology:

- A priority wish-list for NNLO from exp.
- What is really needed? In which form?
- Is speed / computing an issue?
- NNLO for PDFs?

Technical discussions / comparison of frameworks:

- Recap: what can we do (in theory and in practice) and how well with our frameworks? Timescales?
- Ideas to solve generic framework-independent issues (bin-to-bin fluctuations...)
- clarify the strengths and weaknesses of each RR method in the market, especially in terms of:
 - extending to arbitrary processes (2->2, 2->3)
 - prospects for automatization (or at least "automatization")
 - performance/numerical stability issues