Higgs interference overview

(borrowing from slides of Daniel de Florian, Sara Bolognesi and Sara Diglio)

gg Higgs signal and irred. background

 $gg \rightarrow H \rightarrow WW/ZZ$

 $gg \to H \to \gamma\gamma$

Similarly: VBF and other Higgs production channels

Activity

Higgs-continuum $gg \rightarrow VV$ interference Glover, van der Bij (1989); Binoth, Ciccolini, NK, Krämer (2006) (gg2WW); Campbell, Ellis, Williams (2011) (MCFM); NK (2012) (gg2VV); Passarino (2012); NK, Passarino (2012); Campanario, Li, Rauch, Spira (2012); Frixione, Hirschi, Laureys, Maltoni (aMC@NLO); Bonvini, Caola, Forte, Melnikov, Ridolfi (2013) approx. (N)NLO

Higgs-continuum $gg \rightarrow \gamma\gamma$ and $\gamma\gamma j$ interference Dicus, Willenbrock (1988); Dixon, Siu (2003); Martin (2012, 2013); de Florian et al. (2013); Dixon, Li (2013) NLO

plus VBF (VBFNLO group & Phantom group)

and experimental studies in ATLAS and CMS

EXP-TH collaboration in LHC Higgs Cross Section Working Group

Mass peak shift in $H \rightarrow \gamma \gamma$

124

Μ.,

126

127

128

123

FIG. 1: The distribution of diphoton invariant masses from the real interference term in eq. (12), as a function of $M_{77} - \sqrt{s}$, from eq. (10), before including experimental resolution effects. The right panel is a

S.P. Martin

 small asymmetry in the interference at this level shift is O(MeV) as expected

Asymmetry enhanced by detector resolution can reach 100 MeV effect

FIG. 3: Diphoton invariant mass distributions with a Gaussian mass resolution of width $\sigma_{MR} = 1.7$ GeV. In each panel, the right (red) curve includes only the Higgs contribution without interference, and the left (blue) curve also includes the interference contribution from Figure 2. The right panel is a close-up of the left panel.

Effects from other channels go in opposite direction

•D.deF., N.Fidanza, R.Hernandez-Pinto, J.Mazzitelli, Y.Rotstein, G.Sborlini

S.P. Martin

FIG. 4.3: The solid lines show the shifts in the diphoton mass peak, $\Delta M_{\gamma\gamma} \equiv M_{\gamma\gamma}^{\text{peak}} - M_H$, for $pp \rightarrow j\gamma\gamma$, as a function of the cut on the transverse momentum of the jet, $p_{T,\text{peak}}^j$, with other cuts as described in the text, for $\sigma_{\text{MR}} - 1.3$, 1.7, and 2.1 GeV (from top to bottom on the left). The dashed lines shows the results for $pp \rightarrow \gamma\gamma$ at leading order without a jet requirement, again for $\sigma_{\text{MR}} - 1.3$, 1.7, and 2.1 GeV (from top to bottom). The left panel is for pp collisions with $\sqrt{s} - 8$ TeV, and the right panel for $\sqrt{s} - 13$ TeV.

Interference at NLO

L.Dixon, Y.Li (2013)

Mass shift

000

000,

220

Reduction in mass shift but sensitive to width

 $H \rightarrow ZZ$ peak shift is tiny

$H \rightarrow \gamma \gamma$ peak shift dependence on width

$gg \rightarrow H \rightarrow WW$ (light & heavy H)

Campbell, Ellis, Williams MCFM

Figure 6: Upper panel: The cross sections for $gg \to H \to W^+(\to \nu_e e^+)W^-(\to \mu^-\bar{\nu}_{\mu})$ in femtobarns, with $(\sigma_{H,i})$ and without (σ_H) the interference with SM $gg \to WW$ production. The dashed line represents the calculation of $\sigma_{H,i}$ including only the first two generations of quarks. Lower panel: The ratio of the cross sections with and without the interference terms. The dotted magenta line highlights the boundary between constructive and destructive interference.

$gg \rightarrow H \rightarrow VV$: light Higgs (M_H=126 GeV)

Decay modes, where Higgs mass can be reconstructed:

Cuts select resonance region, where interference effects are negligible

Decay modes, where Higgs mass cannot be reconstructed:

a priori: large interference effects, O(10%)

Can Higgs tail be observed??

Integration over large kinematical range enhances off-shell effects and interference with background

INTERFERENCE EFFECTS IN $GG \rightarrow VV$

-REMINDER-

S. Bolognesi & S. Diglio

7th LHC Cross Section Workshop

MC STATUS FOR GGF: CPS AND INTERFERENCE

- PowHeg BOX
 - NLO event generator
 - CPS propagator NO Interference
- gg2VV 3.1.1
 - parton level event generator

- Event generators with LHE format output that can be interfaced with Parton Shower
- $gg \rightarrow WW \rightarrow I_VI_V$ and $ZZ \rightarrow 4I/2I_2V$ interference calculation at LO: S+I+B
- same final state interference between WW \rightarrow IvIv and ZZ \rightarrow 2I2v
- Soon gg \rightarrow WW \rightarrow Ivqq and gg \rightarrow ZZ \rightarrow Ilqq
- CPS propagator
- MC@NLO v4.09
 - parton level event generator (signal at NLO)
 - gg → WW→ lvlv and ZZ→4l/2l2v interference calculation: B+I (LO-Madgraph based) + S(NLO)
 - CPS propagator
- MCFM 6.3
 - parton level MC code
 - gg→WW→ lvlv interference calculation at LO: S+I

MC STATUS FOR **VBF**: PROPAGATOR AND INTERFERENCE

- PowHeg BOX
 - NO s/b Interference
 - CPS propagator
- VBF@NLO
 - s/b interference at LO
 - full ME pp->jj4l
- Phantom
 - s/b interference at LO
 - full ME pp->jj4l
- HAWK
 - NO s/b interference
 - NO matching to PS
 - NLO QCD and EW corrections

Event generators with LHE format output that can be interfaced with Parton Shower

$gg \to H \to WW/ZZ \to \ell \bar{\nu}_{\ell} \ell \nu_{\ell}$ (same flavour)

same flavour: all four contributions interfere (different flavour: WW only)

continuum WW/ZZ interference:

Nason and Rocket team studied continuum WW/ZZ interference in quark scattering (LO) \rightarrow negligible (arXiv:1107.5051)

 $gg \to WW/ZZ \to \ell \bar{\nu}_{\ell} \bar{\ell} \nu_{\ell}$ with minimal cuts: negative interference of $\sim 6\%$ at 8 TeV

 $gg \rightarrow H \rightarrow WW/ZZ \rightarrow \ell \bar{\nu}_{\ell} \bar{\ell} \nu_{\ell}$ (same flavour) at $M_H = 125 \text{ GeV}$ Due to H \rightarrow WW search cuts: ZZ contribution does not affect interference effects much

Heavy Higgs analysis

$gg \to H \to WW/ZZ \to \ell \bar{\nu}_{\ell} \bar{\ell} \nu_{\ell}$: $H \to ZZ$ search cuts

	$gg (\to H) \to WW/ZZ \to \ell \bar{\nu}_{\ell} \bar{\ell} \nu_{\ell}$				
	σ [fb], $pp, \sqrt{s}=8$ TeV, $M_{H}=600{\rm GeV}$			interference	
process	H_{offshell}	cont	$ H_{ofs}$ +cont $ ^2$	R_1	R_2
$gg (\rightarrow H) \rightarrow ZZ$	0.2175(8)	0.0834(2)	0.3150(8)	1.047(4)	1.065(6)
$gg (\rightarrow H) \rightarrow WW/ZZ$	0.2220(8)	0.1020(2)	0.3406(8)	1.051(4)	1.075(6)

	$gg (\to H) \to WW/ZZ \to \ell \bar{\nu}_{\ell} \bar{\ell} \nu_{\ell}$				
	σ [fb], $pp,$	$\overline{s}=8$ TeV, M	$_H = 1000 \mathrm{GeV}$	interfe	rence
process	$H_{ m offshell}$	cont	$ H_{ofs}+cont ^2$	R_1	R_2
$gg (\rightarrow H) \rightarrow ZZ$	0.01265(5)	0.0687(2)	0.0927(2)	1.140(3)	1.90(2)
$gg (\rightarrow H) \rightarrow WW/ZZ$	0.01278(5)	0.0846(3)	0.1090(2)	1.119(3)	1.91(3)

$$H \to ZZ \text{ search cuts: } |M_{\ell\bar{\ell}} - M_Z| < 15 \text{ GeV}, \not\!\!\!E_T > 110 \text{ GeV}, M_T > 325 \text{ GeV}$$
$$M_T = \sqrt{\left(M_{T,\ell\ell} + \not\!\!\!M_T\right)^2 - (p_{T,\ell\ell} + \not\!\!\!p_T)^2} \text{ with } \not\!\!\!M_T = \sqrt{\not\!\!\!p_T^2 + M_{\ell\ell}^2}, \text{ other as above}$$

$$R_1 := \frac{\sigma(|\mathcal{M}_{\mathsf{H}} + \mathcal{M}_{\mathsf{cont}}|^2)}{\sigma(|\mathcal{M}_{\mathsf{H}}|^2) + \sigma(|\mathcal{M}_{\mathsf{cont}}|^2)} \qquad \qquad R_2 := \frac{\sigma(|\mathcal{M}_{\mathsf{H}}|^2 + 2\operatorname{\mathsf{Re}}(\mathcal{M}_{\mathsf{H}}\mathcal{M}_{\mathsf{cont}}^*))}{\sigma(|\mathcal{M}_{\mathsf{H}}|^2)}$$

Heavy Higgs analysis

 $gg \to H \to WW/ZZ \to \ell \bar{\nu}_{\ell} \bar{\ell} \nu_{\ell}$: $H \to WW$ search cuts

	$gg (\to H) \to WW/ZZ \to \ell \bar{\nu}_{\ell} \bar{\ell} \nu_{\ell}$				
	σ [fb], $pp,\sqrt{s}=8{\rm TeV},M_{H}=600{\rm GeV}$			interference	
process	H_{offshell}	cont	$ H_{\sf ofs}$ +cont $ ^2$	R_1	R_2
$gg (\rightarrow H) \rightarrow WW$	0.3124(3)	0.07607(7)	0.3988(4)	1.027(2)	1.033(2)
$gg (\rightarrow H) \rightarrow WW/ZZ$	0.4460(5)	0.09851(8)	0.5715(6)	1.050(2)	1.060(2)

	$gg (\to H) \to WW/ZZ \to \ell \bar{\nu}_{\ell} \bar{\ell} \nu_{\ell}$				
	σ [fb], $pp, \sqrt{s}=8{\rm TeV}, M_H=1000{\rm GeV}$			interference	
process	$H_{ m offshell}$	cont	$ H_{\sf ofs}$ +cont $ ^2$	R_1	R_2
$gg (\to H) \to WW$	0.01287(2)	0.008383(8)	0.02369(2)	1.115(2)	1.189(2)
$gg (\rightarrow H) \rightarrow WW/ZZ$	0.01949(2)	0.01265(2)	0.03824(4)	1.190(2)	1.313(3)

 $gg \rightarrow H \rightarrow VV$: QCD vs. interference corrections How to combine NNLO signal with LO interference and background? G.Passarino Additive $\frac{d\sigma_{\rm eff}^{\rm NNLO}}{dx} = \frac{d\sigma^{\rm NNLO}}{dx}(S) + \frac{d\sigma^{\rm LO}}{dx}(I) + \frac{d\sigma^{\rm LO}}{dx}(B)$ Multiplicative $\frac{d\sigma_{\text{eff}}^{\text{NNLO}}}{dx} = K_{\text{D}} \left[\frac{d\sigma^{\text{LO}}}{dx}(S) + \frac{d\sigma^{\text{LO}}}{dx}(I) \right] + \frac{d\sigma^{\text{LO}}}{dx}(B), \qquad K_{\text{D}} = \frac{\frac{d\sigma^{\text{NNLO}}}{dx}(S)}{\frac{d\sigma^{\text{LO}}}{dx}(S)},$ Intermediate $\frac{d\sigma_{eff}^{\text{NNLO}}}{dr} = K_{\text{D}} \frac{d\sigma^{\text{LO}}}{dr} (S) + (K_{\text{D}}^{\text{gg}})^{1/2} \frac{d\sigma^{\text{LO}}}{dr} (I) + \frac{d\sigma^{\text{LO}}}{dr} (B)$ "Central value" Estimation of associated theoretical uncertainty G. Passarino New: Signal-background interference effects for $gg \to H \to W^+W^-$ beyond leading order M.Bonvini, F.Caola, S.Forte, K.Melnikov, G.Ridolfi see talk by Fabrizio Caola

Use soft-virtual approximation at NNLO (assuming two-loop Higgs coefficient for background)

QCD corrections enhance interference, similar to enhancement for signal

 $K_{signal} \sim K_{interf}$

$m_h = 600 \text{ GeV}, \sqrt{s} = 8 \text{ TeV}$			1	$\sqrt{s} = 13 \text{ TeV}$		
	LO	NLO	NNLO	LO	NLO	NNLO
σ_H	0.379	0.83(2)	1.07(5)	1.55	3.29(8)	4.2(2)
σ_{Hi}	0.427	0.93(3)	1.20(7)	1.66	3.5(1)	4.5(2)
σ_H / σ_H^{LO}		2.19(5)	2.8(1)		2.13(5)	2.7(1)
$\sigma_{Hi}/\sigma_{Hi}^{\rm LO}$		2.19(7)	2.8(2)		2.12(6)	2.7(1)

Scope of the group

Providing theoretical guidelines, in common between CMS and ATLAS to

- characterize properly heavy Higgs in the SM
 -> legacy results for SM limits up to 1 TeV
- define general benchmarks to reinterpret SM searches/ signatures in BSM scenarios. Starting from most basic ones:
 - SM Higgs mixed with EW-singlet (today)
 - 2HDM (next meeting)

•

- Higgs triplet models
- two near degenerate states at
 126GeV in model-independent way
 experiments, to be worked out

interests from

 first discussions about more general study of EWSB mechanisms (VV scattering workshop to be organized soon)

S.	Bolognesi	(JHU)
----	-----------	-------

Higgs mixed with EW-singlet

Two resonances with couplings rescaled wrt to SM

- coupling of h126 (h) = C × SM
 coupling of heavy Higgs (H) ~ C' × SM
- unitarization: $C'^2 + C^2 = 1$, ie $C' = \cos\theta$, $C = \sin\theta$ -> 1 free parameter: θ mixing angle

- observation of h126 put experimental limits on value of mixing angle (on possible width and xsec range for heavy mass search) $\mu_{h}' = \sin^2\theta \times \mu_{h}^{SM}$
- Today talk: same kinematics, same QCD corrections and uncertainties as SM heavy Higgs !!! -> all SM recipe/computations can be used... what about EWK-corrections?

S. Bolognesi (JHU)	HXSWG – Heavy BSM Higgs Apr. 2013
--------------------	-----------------------------------

Conclusions and agenda

□ Work on-going for proper characterization of heavy Higgs in general BSM scenarios:

• EWK singlet: are the EWK corrections the same as in the SM case? If not, can they be easily computed? (today first talk: EWK-singlet and EWK corrections)

• **2HDM**: QCD corrections/uncertainties are being rescaled with modified couplings. What about EWK corrections? (*next meeting will be devoted to 2HDM*)

Study of heavy Higgs in SM: first step needed to extend the recipes to BSM scenarios SM calculations may often be redone/re-casted easily to these basic/general BSM scenarios

(today second talk: gg->VV S+B+I at NNLO with soft collinear approx.)

Some discussion items

- Higgs mass peak shift: study with realistic detector effects (experimental and theoretical systematics)
- Higgs interferometry: is absolute determination of Higgs width and couplings important?
- VV: approximation of higher-order corrections for interference
 Impact on recipe for combination of (N)NLO S, LO I and B and improved uncertainty estimation
- □ Inclusion of EW corrections (in event generators?)

Light SM Higgs discovered, therefore: heavy Higgs implies BSM
 Best way to adapt and use existing MC tools in BSM studies
 How to estimate/optimize theory uncertainty for BSM