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Abstract
This work presents a set of conventions and numerical structures that aim
to provide a universal interface between computer programs calculating dark
matter related observables. It specifies input and output parameters for the
calculation of observables such as abundance, direct and various indirect de-
tection rates. These parameters range from cosmological to astrophysical to
nuclear observables. The present conventions lay the foundations for defining
a future Les Houches Dark Matter Accord.

1. INTRODUCTION

Over the last decade a burst of activity has surrounded various dark matter related problems. As a
byproduct of this activity, a number of robust numerical tools have been created by particle, astro-particle
and astrophysicists. These tools predict values for observables that, when contrasted with observation,
can shed light on the properties of dark matter. The dark matter related computer codes address a wide
range of physical problems, of which the most important are:

1. deriving Feynman rules from Lagrangians,
2. calculating scattering amplitudes from Feynman rules,
3. building cross sections or decay rates from amplitudes,
4. computing dark matter abundance from cross sections or decay rates,
5. obtaining dark matter-nucleon scattering rates from cross sections,
6. evaluating cosmic ray yields based on annihilation cross sections or decay rates.

A certainly incomplete but representative list of such computer codes is:

[1] CalcHEP (2, 3) [2] DarkSUSY (3, 4, 5, 6) [3, 4] DMFIT and DMMW (6)
[5] DRAGON (6) [6] FeynRules (1) [7] GALPROP (6)
[8] ISATools (4, 5) [9] LanHEP (1) [10] micrOmegas (2, 3, 4, 5, 6)
[11] PPPC4DMID (6) [12] SuperIso Relic (4)



where the numbers in parentheses after the names indicate what these codes do in the context of the task-
list above. These two lists show that today there exists no code that covers all the dark matter related
calculations (although some come very close), and there are significant overlaps between the capabilities
of these codes. What these lists do not reveal is how general and sophisticated the various programs
are. Not surprisingly, each of these tools has its strengths and weaknesses. Necessarily, all these codes
contain hard-wired assumptions that potentially limit their capabilities.

When particle physicists found themselves in a similar situation regarding collider related calcula-
tions, they created a series of interfaces that allowed their various tools to communicate with each other
[13, 14, 15, 16, 17]. These interfaces allow the users of the codes to easily and selectively exploit the
features that each of the tools offers. The success of the Supersymmetric Les Houches Accord (SLHA)
and the other accords lies in the fact that they significantly increase ease and flexibility for collider related
calculations [15, 16].

Following the successful path of previous Les Houches accords, the Dark Matter Les Houches
agreement (DLHA) proposes a format for storing and exchanging information relevant to dark matter
calculations. In the spirit of the Les Houches accords, DLHA aims to interface various calculators to
provide increased flexibility to users of these tools. Presently these calculators work semi-independently
from each other and their consecutive use typically requires tedious interfacing. However careful this
interfacing is, it may jeopardise the integrity of the tools and, in turn, the results of the calculation.

A related problem DLHA targets is the transparency of the dark matter calculations. Present codes
input and output limited amounts of information while they may contain large amounts of implicit, hard-
wired assumptions that affect their results. The more of this information is accessible, the more control
a user has over the calculation. Additionally, making more assumptions explicit gives the user a chance
to change them and this could lead to a more diverse and productive use of these codes. Since a DLHA
file can be part of the input or the output of a numerical code calculating dark matter related observables,
it aids in making implicit assumptions explicit and, potentially, it allows for changing some of those
assumptions.

Here we give some examples of how such an agreement enables the user to easily interface various
codes with different capabilities and thereby calculate quantities that none of these codes could calculate
alone.

• Assume that code A has the capability to calculate decay rates of a dark matter candidate in an
exotic particle model, but code A can only handle standard cosmology when calculating relic
abundance of the dark matter. Assume that code B does not implement the exotic particle model
of interest but can calculate relic abundance for non-standard cosmologies. With the appropriate
DLHA interface the decay rate can be communicated from code A to B and relic abundance of an
exotic candidate can be calculated in a non-standard cosmology.

• Assume that code C has the capability to calculate the annihilation cross section of a dark matter
candidate with next-to-leading order (NLO) corrections but it has no indirect detection routines
built into it. Meanwhile code D can only do one thing, but it does it excellently: calculate indirect
detection rates. An obvious task for DLHA is to pass the annihilation cross section from C to D,
thereby making it possible to calculate a cosmic ray yield from annihilating dark matter with NLO
corrections.

These examples are just a limited sample of the possibilities that DLHA offers for a resourceful user.

2. CALCULATION OF DARK MATTER RELATED OBSERVABLES

This section summarizes the relevant details of dark matter related calculations so that we can fix our
notation and define the accord in the next section.



2.1 Relic abundance
Numerous microscopic models have been proposed to describe the identity of dark matter particles.
Depending on the details of these models, and conditions in the early Universe, dark matter may have
been produced in various different ways. For simplicity, here we only address the thermal production
mechanism of weakly interacting massive particles.

2.1.1 Thermal relic abundance with standard cosmological assumptions

In this section we recapture some details of the calculation of thermally produced relic abundance of dark
matter following standard cosmological assumptions. According to Big Bang cosmology the Universe
cooled from temperatures substantially higher than the mass of a typical dark matter particle. At those
temperatures dark matter particles were in chemical equilibrium with their environment and consequently
their (co-moving) number density was unchanged. At temperatures comparable to the typical weakly
interacting dark matter particle, at T = O(100 GeV/kB), the Universe was radiation dominated. (Here
kB is the Boltzmann constant.) As the Universe cooled and expanded further, dark matter particles
came in thermal equilibrium with the cooling radiation and consequently their number density decreased
exponentially. Later scattering between dark matter particles became rare until the scattering rate fell
below the expansion rate of the Universe for the dark matter particles to stay in equilibrium. At that
stage dark matter particles froze-out, that is their (co-moving) number density ceased to change.

The change of the average number density of dark matter particles, nχ, is described by Boltz-
mann’s equation [18, 19, 20, 21, 22]. This change occurs due to (co-)annihilation to Standard Model
particles and to the expansion of the early Universe. Boltzmann’s equation reads:

dnχ
dt

= −〈σv〉
(
n2
χ − n2

χ,eq

)
− 3Hnχ. (1)

On the right hand side the thermally averaged product of the annihilation cross section and relative
velocity of the two annihilating dark matter particles is defined by

〈σv〉 =
∫
σv dn1,eqdn2,eq∫
dn1,eqdn2,eq

=
∫
σv f(E1)f(E2)d3p1d

3p2∫
f(E1)f(E2)d3p1d3p2

. (2)

Here pi are the three-momenta and Ei =
√
m2
i + p2

i are the energies of the colliding particles with

i = 1, 2.1 The total (co-)annihilation cross section σ depends on the microscopic properties of the dark
matter particles and can be calculated assuming a particular dark matter model. The equilibrium number
density is given by thermodynamics

nχ,eq =
gχ

(2π)3

∫
f(E)d3E, (3)

where gχ is the number of internal degrees of freedom of dark matter particles. Their energy distribution
is the familiar

f(E) =
1

exp(E/kBT )± 1
. (4)

In Eq. (1) the Hubble parameter describes the expansion rate, and in a nearly flat Friedmann-Lemaitre-
Robertson-Walker (FLRW) Universe it is given by

H2 =
8πGN

3
ρ. (5)

1Throughout this section we use natural units with c = h̄ = 1, unless stated otherwise.



As the Universe was radiation dominated, the total energy density was the standard function of the
temperature of the radiation T :

ρ = ρrad(T ) = geff (T )
π2

30
T 4, (6)

where geff (T ) is the number of internal degrees of freedom of the (effectively) massless particles in the
thermal bath.2

The decrease in number density due to expansion of the Universe can be made implicit by rewriting
Eq. (1) in terms of the co-moving number density

Y =
nχ
s
. (7)

For the radiation dominated Universe the total entropy density is

s = srad(T ) = heff (T )
2π2

45
T 3. (8)

The number of internal degrees of freedom of the particles contributing to the entropy is heff (T ).3

Recasting Boltzmann’s equation for Y as a function of x = mχ/T , where mχ is the mass of the dark
matter particle, we arrive at

dY

dx
=

1
3H

ds

dx
〈σv〉(Y 2 − Y 2

eq). (9)

By utilising Eqs. (5), (6) and (8) this may also be written as

dY

dx
= −

√
πg?

45GN
mχ

x2
〈σv〉(Y 2 − Y 2

eq). (10)

The parameter g? incorporates the degrees of freedom arising from the energy and entropy densities

g
1/2
? =

heff

g
1/2
eff

(
1 +

1
3
T

heff

dheff
dT

)
. (11)

A value for Yeq of a cold gas of dark matter is obtained for (non-)relativistic dark matter particles by
taking the (low) high energy limit of the Maxwell-Boltzmann distribution. For non-relativistic dark
matter particles

Yeq =
45geff
4π4

x2K2(x)
heff (mχ/x)

, (12)

where K2(x) is the modified Bessel function of second order.

In various calculations it can be useful to introduce the freeze-out temperature Tf based on the
condition

Y − Yeq = αYeq, (13)

where α > 0 is a number of order 1. Incorporating this condition into Eq. (10) a statement for freeze-out
is obtained √

πg?
45GN

mχ

x2
〈σv〉α(α+ 2)Yeq = −d(lnYeq)

dx
. (14)

Upon substitution of Eq. (12) into Eq. (14) this allows for a numerical solution for x = xf .

2Here we assume that the various species contributing to the total energy density are all in thermal equilibrium with each
other at a common temperature T .

3For a relativistic particle with one internal degree of freedom, such as a spin zero boson, geff = heff = 1.



Equipped with the co-moving number density after freeze-out, Y0, the relic energy density of dark
matter may be calculated. This is typically given in units of the critical energy density

Ωχ =
ρχ
ρc

=
s0Y0mχ

ρc
, (15)

where ρc is the energy density of a flat FLRW Universe. Here s0 is the current entropy density of the
Universe. Combining Eqs. (5) and (15), the relic density may also be expressed as

Ωχh
2 =

8πGN
3

s0Y0mχ × 10−4(s Mpc/km)2. (16)

The present day normalized Hubble expansion rate h is determined via

H0 = 100 h km/(s Mpc). (17)

2.1.2 Thermal relic abundance with non-standard cosmological assumptions

In this section, we consider the generic scenario described in Refs. [23, 24] and implemented in SuperIso
Relic [25, 12] and AlterBBN [26]. In this scenario the total energy density and entropy density of
the Universe are modified:

ρ = ρrad + ρD, s = srad + sD. (18)

The temperature dependence of the additional components ρD and sD can be parametrized as

αD(T ) = κααrad(TBBN )
(

T

TBBN

)nα

, (19)

where α = ρ or s,

κα =
αdark(TBBN )
αrad(TBBN )

, (20)

and TBBN is the Big Bang Nucleosynthesis temperature.

The time evolution of the total entropy density is given by

ds

dt
= −3Hs+ ΣD, (21)

where ΣD describes the entropy production of the additional component. Instead of parametrizing the
entropy density sD, it is sometimes better (for example for reheating models) to write ΣD in the form of
Eq. (19) with α = Σ, and it is then related to the entropy density by

ΣD = T 2

√
4π3G

5

(
1 +

ρD
ρrad

)(
sDg

1/2
eff −

1
3
heff

g
1/2
?

T
dsD
dT

)
. (22)

A possible generalization of the above parameterizations consists of relaxing Eq. (19) and letting ρD,
sD, ΣD and/or H be general functions of the temperature.

Introducing the co-moving number density Y = nχ/s, Eq.(1) becomes

dY

dx
= −

√
πg?
45

mχ

x2

(
1 + sD/srad√
1 + ρD/ρrad

)(
〈σv〉(Y 2 − Y 2

eq) +
Y ΣD

s2rad(1 + sD/srad)2

)
, (23)

where

Yeq =
45geff
4π4

1
1 + sD/srad

x2K2(x)
heff (mχ/x)

. (24)

The relic abundance can then be calculated based on Eq. (16).



2.2 Direct detection
If dark matter and Standard Model particles interact with strength comparable to that of the electroweak
interactions, and if dark matter is massive and fast enough, then it may be detected by observing dark
matter scattering on atoms. This is the aim of the direct dark matter detection experiments. To assess
detection rates we calculate elastic scattering cross sections of dark matter on nuclei. These cross sections
are derived from a Lagrangian describing the effective interaction of dark matter with nuclei. Nuclear
form factors provide a link between the partons, the nucleons and the nucleus of the target species.
For simplicity, in this first agreement, we only consider elastic dark matter-nucleus scattering. Inelastic
scattering may be included in a future edition of this agreement.

The dark matter-nucleus recoil rate per unit detector mass, unit time, and unit recoil energy E is
written in the form

dR

dE
=

σA(E)
2mχµ2

A

ρχ η(E, t), (25)

where
µA =

mχmA

mχ +mA
(26)

is the dark matter-nucleus reduced mass with mA the nucleus mass, σA(E) is the dark matter-nucleus
scattering cross section, ρχ is the local dark matter density, and

η(E, t) =
∫
|v|>vmin(E)

f(v, t)
|v|

d3v (27)

is an average inverse dark matter speed, also called the velocity integral. Here f(v, t) is the dark matter
velocity distribution in the reference frame of the detector, which is expected to be time dependent, and

vmin(E) =

√
mAE

2µ2
A

(28)

is the minimum dark matter speed that can impart a recoil energy E to the nucleus. Notice that the dark
matter-nucleus differential cross section in recoil energy E for a dark matter particle of initial velocity v
with respect to the nucleus has the expression

dσA
dE

=
σA(E)
Emax(v)

Θ(Emax(v)− E) , (29)

where

Emax(v) =
2µ2

Av
2

mA
(30)

is the maximum recoil energy that a particle of velocity v can impart to the nucleus.

Only the non-relativistic limit is relevant for dark matter-nucleus scattering. In this limit, only
two kinds of nucleon currents survive: the spin-independent current ψ†ψ and the spin-dependent current
ψ†Sψ. Here ψ is the nucleon wave function (a non-relativistic two-component Pauli spinor) and S = 1

2σ
is the nucleon spin operator. Therefore one splits the differential dark matter-nucleus scattering cross
section σA(E) into its spin-independent (SI) and spin-dependent (SD) contributions,

σA(E) = σSIA (E) + σSDA (E). (31)

Correspondingly, one often separates the spin-independent and spin-dependent contributions to the recoil
rate dR/dE as

dR

dE
=
(
dR

dE

)SI
+
(
dR

dE

)SD
. (32)



Table 1: Four-particle effective vertices for dark matter-proton elastic scattering. Dark matter-neutron vertices are obtained by

changing p→ n. sχ is the spin of the dark matter particle.

sχ = 0 sχ = 1
2 sχ = 1

spin-independent
�

�
��@

@
@@p p

χ χ

�
�

��@
@

@@p p

χ χ

2fp

�
�

��@
@

@@p p

χ χ

spin-dependent N/A
�

�
��@

@
@@p p

χ χ

2
√

2GFapσχ ·σp

�
�

��@
@

@@p p

χ χ

The spin-independent part σSIA (E) is written as

σSIA (E) =
4µ2

A

π

∣∣∣Z fp F
(Z,A)
p (E) + (A− Z) fn F

(Z,A)
n (E)

∣∣∣2, (33)

where Z is the number of protons in the nucleus (atomic number), A is the mass number of the nucleus,
F

(Z,A)
p (E) and F (Z,A)

n (E) are proton and nucleon number density form factors for the nucleus (Z,A),
normalized to F (Z,A)

p (0) = F
(Z,A)
n (0) = 1, and finally 2fp and 2fn are the dimensionless four-particle

vertices for the SI dark matter-proton and dark matter-neutron interactions, respectively.

One also introduces the pointlike dark matter-proton and dark matter-neutron cross sections, which
by convention are used when reporting or interpreting experimental results,

σSIp =
4µ2

p

π
|fp|2, σSIn =

4µ2
n

π
|fn|2. (34)

Here µp and µn are the reduced dark matter-proton and dark matter-neutron masses.

One often assumes, and we will do so in this first agreement, that

F (Z,A)
p (E) = F (Z,A)

n (E) ≡ FA(E). (35)

In this case, one sometimes introduces the pointlike dark matter-nucleus cross section

σSIA,0 =
4µ2

A

π

∣∣∣Z fp + (A− Z) fn

∣∣∣2, (36)

which is σSIA with F (Z,A)
p (E) = F

(Z,A)
n (E) = 1.

The spin-dependent part σSDA (E) is written as

σSD(Z,A)(E) =
32µ2

AG
2
F

(2JA + 1)
[
a2

p S
(Z,A)
pp (E) + a2

n S
(Z,A)
nn (E) + ap an S

(Z,A)
pn (E)

]
. (37)

Here GF = 1.16637× 10−5 (h̄c)3/GeV2 is the Fermi coupling constant, JA is the nucleus total angular
momentum in units of h̄, and finally 2

√
2GFap and 2

√
2GFan are the effective four-particle vertices

for the SD interaction of DM particles with protons and neutrons.



In Eq. (37), the dimensionless functions S(Z,A)
pp (E), S(Z,A)

nn (E), and S(Z,A)
pn (E) are the proton-

proton, neutron-neutron, and proton-neutron nuclear spin structure functions. They can be written in
terms of isoscalar and isovector spin structure functions S(Z,A)

00 , S(Z,A)
11 , S(Z,A)

01 as

S(Z,A)
pp = S

(Z,A)
00 + S

(Z,A)
11 + S

(Z,A)
01 , (38)

S(Z,A)
nn = S

(Z,A)
00 + SA11 − S

(Z,A)
01 , (39)

S(Z,A)
pn = 2(S(Z,A)

00 − S
(Z,A)
11 ) . (40)

One similarly introduces
a0 = ap + an, a1 = ap − an. (41)

When the nuclear spin is approximated by the spin of the odd nucleon only, one finds

S(Z,A)
pp =

λ2
A JA(JA + 1)(2JA + 1)

π
, SnAnn = 0 , S(Z,A)

pn = 0 , (42)

for a proton-odd nucleus, and

S(Z,A)
pp = 0 , SAnn =

λ2
A JA(JA + 1)(2JA + 1)

π
, S(Z,A)

pn = 0 , (43)

for a neutron-odd nucleus. Here λA is conventionally defined through the relation 〈ψA|SA|ψA〉 =
λA 〈ψA|JA|ψA〉, where |ψA〉 is the nuclear state, SA is the nucleus spin vector, and JA is its total angular
momentum vector.

One sometimes introduces dark matter-nucleon pointlike cross sections. For a single proton or a
single neutron, λp = λn = 1, Jp = Jn = 1

2 , and

σSDp =
36µ2

pG
2
F

π2
|ap|2, σSDn =

36µ2
nG

2
F

π2
|an|2. (44)

We may list the expressions of the effective four-particle dark matter-nucleon couplings fp, fn, ap

and an in terms of elementary couplings to quarks and gluons for various kinds of dark matter particles,
via an effective four-particle lagrangian with spin s

Leff (s) =
1
2

∑
i=e,o

fN,i(s)LSIN,i(s) +
∑
i=e,o

aN,i(s)LSDN,i(s)

 . (45)

The operators LSIe (s) and LSIo (s) describe spin independent even and odd interactions, while LSDe (s)
and LSDo (s) are their spin dependent counterparts.4 Table 2 shows the explicit forms of these operators
for various values of s. The dark matter-nucleon couplings can be obtained as

fN =
∑
i=e,o

fN,i(s), aN =
∑
i=e,o

aN,i(s), (46)

Dark matter-nucleus scattering amplitudes can be calculated based on parton level amplitudes after
relating nuclear couplings to dark-matter quark couplings via nucleon form factors

2fN,e =
∑
q

mp

mq
fNq sq,e, 2fN,o =

∑
q

mp

mq
fNVq

sq,o, (47)

2
√

2GFaN,e =
∑
q

∆N
q aq,e, 2

√
2GFaN,o =

∑
q

δNq aq,o. (48)

4Even and odd couplings are introduced to trace symmetries under particle-antiparticle interchange. Majorana fermions, for
example, have even couplings and non-Majorana fermions have odd couplings.



Table 2: Even and odd operators LSI,SD
e,o (s) for dark matter interactions with standard quarks q. A scalar field only interacts in

a spin independent manner [27].

s Even operators (i = e) Odd operators (i = o)
Spin independent 0 2Mχχχ

†q̄q i(∂µχχ† − χ∂µχ
†)q̄γµq

(SI) 1/2 χ̄χq̄q χ̄γµχq̄γ
µq

1 2Mχχµχ
µq̄q i(χ†α∂µχ, α− χα∂µχ

†
α)q̄γµq

Spin dependent 1/2 χ̄γ5γµχq̄γ5γ
µq −1

2 χ̄σµνχq̄σ
µνq

(SD) 1
√

6(∂µχ†βχγ − χ†β∂µχγ)ε
αβγµq̄γ5γµq

√
3

2 i(χµχ
†
ν − χ†µχν)q̄σµνq

These form factors capture the distribution of quarks within the nucleons. The light quark flavor scalar
form factors are related to the pion-nucleon sigma term and the nucleon and quark masses as

fp,nu =
mu

md
α+1,−1fp,nd , fp,nd =

2σπN
(1 + mu

md
)mp,n

α0,1

1 + α
, fp,ns =

σπNy

(1 + mu
md

)mp,n

ms

md
. (49)

Here α = Bu/Bd, σπN = (mu + md)(Bu + Bd)/2, y = 2Bs/(Bu + Bd) and Bq = 〈N |q̄q|N〉. The
heavy flavor scalar form factors are typically calculated as

fNQ =
2
27

1−
∑

q=u,d,s

fNq

 . (50)

2.3 Indirect detection
Perhaps the most challenging way to discover dark matter is to detect its annihilation or decay products in
the astrophysical environment. This is called indirect detection and involves the description of an initial
(source) distribution of standard particles originating from dense dark matter concentrations. After the
source properties are fixed, the propagation of the secondary particles has to be followed through. Here
we review only the simplest cases: electron, positron, antiproton or photon production via dark matter
annihilation and their subsequent propagation to us through our Galaxy using a simplified but effective
treatment. We also comment on the modifications which would need to be introduced for a more detailed
treatment.

Charged cosmic ray propagation through the Galaxy can be usually described by the diffusion-
convection model [28]. This model assumes homogeneous propagation of charged particles within a
certain diffusive region (similar to one of the simplest models of propagation called the leaky box model),
but it also takes into account cooling (energy loss) effects. The diffusive region is usually assumed to
have the shape of a solid flat cylinder of half-height L and radius R that sandwiches the Galactic plane:
inside it, charged cosmic rays are trapped by magnetic fields; outside, they are free to stream away. The
(cylindrical) coordinates of the solar system correspond to ~r� = (8.33 kpc, 0 kpc) [29]. The phase-
space density ψa(~r, p, t) of a particular cosmic ray species a at an instant t, at a Galactic position ~r and
with momentum p can be calculated by solving the cosmic ray transport equation, which has the general
form [30]

∂ψa(~r, p, t)
∂t

= Qa(~r, p, t) +∇ · (Dxx∇ψa − ~V ψa)

+
∂

∂p

(
p2Dpp

∂

∂p

1
p2
ψa

)
− ∂

∂p

(
ṗψa −

p

3
(∇ · ~V )ψa

)
− 1
τf
ψa −

1
τr
ψa. (51)

Usually one assumes that steady state conditions hold, as they do if the typical time scales of the dark
matter galactic collapse and of the variation of propagation conditions are much longer than the time



scale of propagation itself (which is of the order of 1 Myr at 100 GeV energies). In this case, the l.h.s.
can be equated to zero and the dependence on time is dropped for all quantities.

We concentrate on a version of the propagation equation which is sufficient to describe in first
approximation the electron or positron and proton or antiproton flux through the Galaxy:

0 = Qa(~r,E) +K(E) ∇2ψa +
∂

∂E

(
b(E) ψa − KEE(E) ψa

)
− ∂

∂z
(sign(z)VC ψa) , (52)

where now E is the energy of the secondary particle species a. Boundary conditions are imposed such
that the CR density vanishes on the outer surface of the cylinder, outside of which the particles are sup-
posed to freely propagate and escape, consistently with the physical picture described above. At r = 0,
one imposes a symmetric condition ∂ψa/∂r(r = 0) = 0. In momentum space one imposes null bound-
ary conditions. The terms containing the spatial diffusion coefficientK(E), the energy loss rate b(E) and
the diffusive reacceleration coefficient KEE(E) describe respectively the transport of cosmic ray species
through turbulent magnetic fields, their cooling due to different phenomena (such as Inverse Compton
scattering (ICS), synchrotron radiation, Coulomb scattering or bremsstrahlung) and their reacceleration
due to hits on moving magnetized scattering targets in the Galaxy. The term with the convective velocity
VC describes the characteristics of the Galactic winds emanating vertically from the stars in the disk. A
source term resulting from dark matter annihilation can be written as

Qa(~r,E) =
1
2
dNa

dE
〈σav〉0

(
ρg(~r)
mχ

)2

. (53)

Here 〈σav〉0 is the value of the thermally averaged annihilation cross section into the relevant species, and
ρg(r) is the dark matter energy density in the Galaxy. The energy distribution of the secondary particle
a is dNa/dE, normalized per annihilation. This formula applies to self-conjugated annihilating dark
matter. In the case of non-self-conjugated dark matter, or of multicomponent dark matter, the quantities
in Eq. (53) should be replaced as follows, where an index i denotes a charge state and/or particle species
(indeed any particle property, collectively called ”component”) and fi = ni/n is the number fraction of
the i-th component:

mχ →
∑
i

fimi (mean mass), (54)

〈σav〉 →
∑
ij

fifj〈σa,ijvij〉 (mean cross section times relative velocity), (55)

dNa/dE →
∑

ij fifjσa,ijvij (dNa,ij/dE)∑
ij fifjσa,ijvij

, (annihilation spectrum per annihilation). (56)

The spatial diffusion coefficient K(E) is generally taken to have the form

K(E) = K0 v
η

(
R

GeV

)δ
, (57)

where v is the speed (in units of c) and R = p/eZ is the magnetic rigidity of the cosmic ray particles.
Here Z is the effective nuclear charge of the particle and e is the absolute value of its electric charge
(of course the quantities are different from 1 only in the case in which particles other than electrons,
positrons, protons or antiprotons are considered). The parameter η controls the behavior of diffusion
at low energy: recently, in departure from the traditional choice η = 1, other values (possibly nega-
tive) have been advocated. In more detailed treatments, the diffusion coefficient can be considered as
space dependent (K(~r,E)) and a possible dependence on the particle direction of motion, leading to
anisotropic diffusion, can be introduced.



The energy loss rate can be parametrized as

b(E) = b0 E
2. (58)

This form holds as long as one neglects the fact that energy losses are position dependent in the Galactic
halo (e.g. synchrotron radiation depends on the intensity of the magnetic field, which varies in the
Galaxy, and ICS depends on the density of the background light distribution, which also varies in the
Galaxy), and as long as one assumes that all energy loss phenomena are proportional to E2 (which is
true only if one neglects Coulomb losses and bremsstrahlung and one considers ICS only in the Thomson
scattering regime, i.e. at relatively low electron or positron energy). In a more detailed treatment, the
energy loss rate can also be considered as space dependent, b(~r,E), and with a more general dependence
on the energy. Coulomb losses (dE/dt ∼ const) and bremsstrahlung losses (dE/dt ∼ bE) can also be
taken into account. Some codes compute these using detailed formulae as a function of position and
energy, based on the gas, interstellar radiation and magnetic field distributions [7]. The ultimate form of
the energy loss rate may be a complex function which, as will be described below, can be given under
FUNCTION EnerLoss.

Finally, the diffusive reacceleration coefficient KEE(E) is usually parameterized as

KEE(E) =
2
9
v2
A

v4E2

K(E)
, (59)

where vA is the Alfvén speed.

A propagator, or Green’s function G, is used to evolve the flux which originates from the source
Q at ~rS with energy ES through the diffusive halo, to reach the Earth at point ~r with energy E. This
allows the general solution for Eq. (52) to be written as

ψa(~r,E) =
∫ mχ

E
dES

∫
d3rS G(~r,E;~rS , ES)Qa(~rS , ES). (60)

The differential flux is related to the solution in Eq. (60) via

dΦa

dE
=
v(E)
4π

ψa(~r,E). (61)

For proton or antiproton propagation in the Galactic halo, additional terms in Eq. (52) should be intro-
duced to account for spallations on the gas in the disk.

We next turn to photons. In this case, propagation is much simpler since no scattering processes
take place. This leads to a straight line propagation without any energy loss, which, in the formalism
above, corresponds to a trivial propagator. Thus, for photons a = γ, by utilising Eqs. (53) and (60), Eq.
(61) can be approximated with

dΦγ

dE
(φ) = 〈σγv〉0

dNγ

dE

1
8πm2

χ

∫ ∞

0
ρ2
g(r(s, φ)) ds. (62)

Here the square of the Galactic dark matter density profile ρ2
g is integrated over the line of sight, parame-

terized by the coordinate s. The angle φ is the aperture between the direction of the line of sight and the
axis connecting the Earth to the Galactic Center. Explicitly, the coordinate r, centered on the Galactic
Center, reads

r(s, φ) = (r2� + s2 − 2 r� s cosφ)1/2. (63)

As for Eq. (53), Eq. (62) applies to self-conjugated annihilating dark matter. If dark matter is not com-
posed of self-conjugated particles, and n indicates the number density of particles and n the number
density of antiparticles, the factor n2/2 in the formula above has to be replaced by nn.



This formula will depend very sensitively on the direction, especially near the galactic center.
However, a given gamma-ray instrument will only measure an averaged value, smeared over the angular
resolution. Therefore, a more useful quantity to compute is that average value in the direction given by
φ [31],

dΦγ

dE
(φ;∆Ω) =

∫
dΩ′dΦγ

dE
(ϕ′, θ′)R∆Ω(θ′), (64)

where

R∆Ω(θ′) =
1

2πθ2
r

exp
(
−θ′2

2θ2
r

)
, (65)

describes the angular resolution θr with dΩ′ = dϕ′d cos θ′. Here φ′ and θ′ are polar coordinates centered
on the direction φ, and ∆Ω = πθ2

r (for small θr). For the different, slightly varying lines of sight entering
the integral, cosφ in Eq. (63) is replaced by cosψ = cosφ cos θ′ − cosϕ′ sinφ sin θ′.

2.3.1 Dark matter substructures

If dark matter particles are packed inside dense clumps, their annihilations are enhanced, and so are their
indirect signatures at the Earth. The boost factor by which the yield of a smooth dark matter halo has to
be multiplied depends in a simple, but not obvious, way on the spatial distribution of the clumps and on
their inner structure. A population P of substructures i generates at the Earth the cosmic ray density

ψsuba (~r,E) =

(
S ≡ 1

2
〈σav〉0

(
ρ�
mχ

)2
)∑

i∈P
G̃i ξi , (66)

where the effective propagator G̃i, defined as

G̃i =
∫ mχ

E
dES G(~r,E;~ri, ES)

dNa

dE
, (67)

takes into account the propagation from clump i located at ~ri, and the injection spectrum at the source.
The annihilation volume ξi would be the volume of clump i should its density be equal to the Milky Way
dark matter density ρ� at the Sun. It is defined as the integral over the volume of the i-th clump

ξi =
∫

clump i
d3rS

(
ρDM(~rS)
ρ�

)2

. (68)

Because we have no idea of the actual population of dark matter substructures inside which we are
embedded, a statistical analysis needs to be performed on the ensemble of all possible realizations of
galactic clump distributions. A population of NH substructures inside the Milky Way dark matter halo
yields, on average, the cosmic ray density [32, 33, 34]

〈ψsuba (~r,E)〉 = NH S
∫
d3rS

∫
dξ D(~rS , ξ) G̃(~r,E;~rS) ξ. (69)

The propability to find a dark matter clump at location ~rS with annihilation volume ξ is denoted by
D(~rS , ξ). The variance associated to the average substructure signal 〈ψsuba (~r,E)〉 can be expressed as

σ2
ψ(~r,E) = NH S2

∫
d3rS

∫
dξ D(~rS , ξ) G̃2(~r,E;~rS) ξ2 − 〈ψsuba (~r,E)〉2

NH
. (70)



3. DESCRIPTION OF THE DLHA BLOCKS AND FUNCTIONS

Information in a DLHA file is organized into blocks. The general properties of the DLHA blocks follow
those of the Supersymmetry Les Houches Accord (SLHA) [15]. Similarly to SLHA, the entries within
the blocks are identified by the first numerical value(s) within the block. This feature allows for a flexible
order of entries within a block. Most block entries are optional and can be omitted at writing. A missing
entry typically signals the lack of a calculation within the program that wrote the block.

A DLHA file may contain the following blocks or statements (listed here alphabetically):

BLOCK ABUNDANCE
BLOCK ANNIHILATION
BLOCK ASTROPROPAG
BLOCK COSMOLOGY
BLOCK DETECTOR_NUCLEI
BLOCK DMCLUMPS
BLOCK DMSPADIST
BLOCK DMVELDIST
BLOCK DOFREEDOM
BLOCK EFFCOUPLING
BLOCK FORMFACTS
BLOCK INDIRDETSPECTRUM
BLOCK MASS
BLOCK NDMCROSSSECT
BLOCK QNUMBERS
BLOCK STRUCTFUN

Blocks ASTROPROPAG, COSMOLOGY, DETECTOR_NUCLEI, DMCLUMPS, DMSPADIST, DMVELDIST,
DOFREEDOM, FORMFACTS and STRUCTFUN depend on the cosmological, astrophysical, standard par-
ticle and nuclear physics assumptions but are kept independent from the microscopic properties of dark
matter. The rest of the blocks depend on the microscopic physics describing dark matter. A given dark
matter candidate is identified in the block MASS by the PDG number and mass of the particle. If the PDG
code of a particle does not exist then an arbitrary code identifying the candidate can be supplied. Further
microscopic properties of the dark matter candidate are given in block QNUMBERS.

For dark matter models containing multiple dark matter candidates a separate DLHA file has to be
created for each candidate. If multiple dark matter candidates contribute simultaneously to the present
abundance and direct or indirect detection signals, multiple sets of blocks may appear for each candidate
in separate files. For example, a DLHA file may contain

BLOCK MASS
# PDG code mass particle name

1000022 1.29098165E+00 # 1st neutralino
...
BLOCK QNUMBERS
...
BLOCK ABUNDANCE
...

while another DLHA file might contain

BLOCK MASS
# PDG code mass particle name



1000039 2.35019093E+00 # gravitino
BLOCK QNUMBERS
...
BLOCK ABUNDANCE
...

Here the ellipses denote entries irrelevant to this discussion. A user of DLHA is responsible for knowing
that the two files contain information in the context of multiple dark matter candidates.

For decaying dark matter particles a standard SLHA decay file can be used to read and write the
total decay width of the dark matter particle and its branching ratios into various final states.

3.1 The FUNCTION object
Departing from the tradition of previous Les Houches accords, DLHA introduces a new structure that
specifies a function. A function definition is facilitated by DLHA using the following construction

FUNCTION <name> type=<type> args=<number of arguments>
...
END_FUNCTION

The FUNCTION heading denotes the beginning and END_FUNCTION the end of the structure. Each
function is identified by a name, which follows the FUNCTION heading. In the various block descriptions
below we fix the names of the possible functions and specify their content. The content of a function can
be given in several different ways in DLHA. The <type> variable differentiates between these methods:

type = P for a predefined function,
type = C for a C function,
type = F for a Fortran function,
type = T for tabular information.

The number of independent variables of the function is given by the numerical value of the last argument
<number of arguments> of the FUNCTION structure.

While a FUNCTION depends on one or more independent variables, it may also carry information
about related parameters inside the body of the function. These parameters can be listed as follows:

FUNCTION <name> type=<type> args=<number of arguments>
PARAMETERS
<parameter name 1>=<value 1>
<parameter name 2>=<value 2>
<parameter name 3>=<value 3>
...

END_PARAMETERS
<function body>
END_FUNCTION

Parameter names are fixed by DLHA in the block descriptions similarly to names of functions. If a
parameter value is specified both outside and inside of a function, the value given inside the FUNCTION
construction overrides the one appearing outside.

Predefined functions, typically the most commonly used functions for a given quantity, are spec-
ified by DLHA under the description of the various functions. A predefined function which is listed in
the DLHA write-up can be referred to by the following construction following the FUNCTION heading:



FUNCTION <name> type=<type> args=<number of arguments>
DLHA <name> <identifier>
...
END_FUNCTION

Within the block descriptions DLHA fixes the function choices corresponding to various numerical val-
ues of identifiers.

As an example, the following structure specifies the use of the Einasto profile for the dark matter
galactic halo profile ρg(r):

FUNCTION rho_g type=P args=2
DLHA rho_g 5
END_FUNCTION

The Einasto profile depends on two arguments. One of them may also be fixed as:

FUNCTION rho_g type=P args=1
DLHA rho_g 5
PARAMETERS
alpha=1
END_PARAMETERS

END_FUNCTION

In the present agreement, we only consider functions tabulated on a rectangular (but not necessary
equidistant) grid. In this case the list of the independent variables and the function value is given as
an n+1 column table. For tabular functions the line after the function name gives the names of the
independent variables and the dimensions of the rectangular grid on which the function is specified. A
schematic example of a function given in tabular format is the following:

FUNCTION rho_g type=T args=2
r: 2 alpha: 3
# r alpha rho_g

0.000000E+00 1.000000E+00 2.345678E+00
1.000000E-05 1.000000E+00 1.234567E+00
0.000000E-05 2.000000E+00 4.567890E+00
1.000000E-05 2.000000E+00 3.456789E+00
0.000000E-05 3.000000E+00 6.789012E+00
1.000000E-05 3.000000E+00 5.678901E+00

END_FUNCTION

A FUNCTION given in the form of a C language function could appear as:

FUNCTION rho_g type=C args=2
#include<math.h>
double Einasto(double r, double alpha)
{ return exp(-2*(pow(r,alpha)-1)/alpha);}

END_FUNCTION

The FUNCTION construction also allows passing function names that are included in a pre-
compiled library:



FUNCTION <name> type=<type> args=<number of arguments>
libName=<name of compiled library>
funcName=<name of function in library>
END_FUNCTION

An example of this is shown in Section 3.8.

3.2 BLOCK COSMOLOGY
The COSMOLOGY block specifies the values of the cosmological parameters that enter into the calculation
of dark matter related observables such as the abundance. The cosmology block may contain numerical
entries such as those below. In these entries, the temperature is given in units of GeV/k, where k is the
Boltzmann constant.

1 The value of the current entropy density of the Universe s0 in units of (GeV/h̄c)3/k, appearing in Eq.
(16).

The cosmology block also accommodates various entries that are defined as functions as described
in the previous subsection. The list of these functions is given below.

Non-standard energy density ρD(T ), as described in Eq. (18), as a function of the temperature
and in units of (GeV/h̄c)4.

FUNCTION rho_D type=<type> args=1
...
END_FUNCTION

Non-standard entropy density sD(T ), as described in Eq. (18), as a function of the temperature
and in units of (GeV/h̄c)3.

FUNCTION s_D type=<type> args=1
...
END_FUNCTION

Non-standard normalized entropy production rate ΣD(T )/
√
G, as described in Eq. (18), as a

function of the temperature and in units of (GeV/h̄c)5.

FUNCTION Sigma_D type=<type> args=1
...
END_FUNCTION

The value of the normalized Hubble expansion rate H(T )/
√
G, as per Eq. (17), as a function of

the temperature. The normalized Hubble expansion rate is in units of (GeV/h̄c)2.

FUNCTION Hubble type=<type> args=1
...
END_FUNCTION

Note that the functions s_D and Sigma_D are not to be given simultaneously, as they refer to
two different parameterizations of the entropy content of the Universe. Also, the functions rho_D and
Hubble do not need to be given simultaneously.

A specific cosmology block, describing a standard cosmological scenario may appear as this:



BLOCK COSMOLOGY
# identifier(s) parameter value comment
1 2.18421585E-03 # s_0 [GeVˆ3]

# -------------------------------------------------
FUNCTION rho_D type=C args=1 # rho_D(T) [GeVˆ4]
...
END_FUNCTION
FUNCTION s_D type=F args=1 # s_D(T) [GeVˆ3]
...
END_FUNCTION

3.3 BLOCK DOFREEDOM
This block contains the various degrees of freedom entering into the abundance calculation.

The effective degrees of freedom geff (T ) in Eq. (6) as a function of the temperature are given by

FUNCTION g_eff type=<type> args=1
...
END_FUNCTION

The units of temperature are GeV/k.

As an alternative to geff (T ), as a function of the temperature, g? can also be given. The latter is
defined in Eq. (11).

FUNCTION gstar type=<type> args=1
...
END_FUNCTION

The effective degrees of freedom heff (T ) in Eq. (8) as a function of the temperature (measured
in GeV/k) are given by

FUNCTION h_eff type=<type> args=1
...
END_FUNCTION

This block containing 57 entries of geff and 48 entries for heff in tabular format might appear as
follows.

BLOCK DOFREEDOM
FUNCTION g_eff type=T args=1
T: 57
# T [GeV/k] g_{eff}(T)
1.00000000E-05 2.00000000E-00
5.00000000E-05 2.00000000E-00
1.00000000E-04 4.00000000E-00

...
END_FUNCTION
FUNCTION h_eff type=T args=1
T: 48
# T [GeV/k] h_{eff}(T)
2.00000000E-05 1.00000000E-00



4.00000000E-05 1.00000000E-00
6.00000000E-05 2.00000000E-00

...
END_FUNCTION

3.4 BLOCK DMSPADIST
Block DMSPADIST contains information regarding the dark matter energy density distribution in various
astrophysical objects, such as galaxies or nebulae. These enter the calculation of direct and indirect
detection rates. Before discussing the block attributes, we list the most commonly used halo profiles
and give their corresponding mathematical expressions. Each profile has a set of parameters which are
dependent on the particular halo of interest. Unless otherwise stated ρ0 sets the normalization of the
profile and rs is the scale radius.

Hernquist-Zhao density profile:

ρg(r) =
ρ0

(r/rs)γ
(
1 + (r/rs)(α−γ)/β

)β . (71)

The Navarro-Frenk-White (NFW) distribution is a special case of this with α = 3, β = 2, and
γ = 1 [35]. The Kravtsov et al. profile can also be obtained from Eq. (71) by setting α = 3 and β = 2
[36].

Modified isothermal profile [37]:

ρg(r) =
ρ0

1 + (r/rs)2
. (72)

Einasto profile [38]:

ρg(r) = ρ0 exp
(
− 2
α

(
rα

rαs
− 1
))

. (73)

Moore et al. profile [39]:

ρg(r) =
ρ0

(r/rs)3/2 (1 + r/rs)
3/2

. (74)

Burkert profile [40]:

ρg(r) =
ρ0r

3
s

(r + rs)(r2 + r2s)
. (75)

3.4.1 The structure of BLOCK DMSPADIST

Since dark matter energy density distributions can be specified for various astrophysical objects, such as
external galaxies and halo substructures, more than one BLOCK DMSPADIST may appear in a DLHA
file. In this case multiple BLOCK DMSPADIST blocks carry an index differentiating them from each
other. For example

BLOCK DMSPADIST_MilkyWay
...

BLOCK DMSPADIST_NGC6388
...

BLOCK DMSPADIST_VIRGOHI21
...



The shape of the dark matter density distribution ρg(r), featured in Eqs. (53) and (62), is defined
by the function

FUNCTION rho_g type=<type> args=<number of arguments>
...
END_FUNCTION

The galactic halo profile is assumed to be given in units of GeV/c2/cm3, and its radial argument in units
of kpc.

Identifiers for numerical parameters featured in this function for predefined density profiles are the
following:
1 the normalization of the profile ρ0 in units of GeV/c2/cm3,
2 the scale radius rs in units of kpc,
3 α for the Hernquist-Zhao and Einasto profiles,
4 β for the Hernquist-Zhao profile,
5 γ for the Hernquist-Zhao profile,
6 the value of the dark matter mass density near Earth ρ⊕ in units of GeV/c2/cm3,
7 our Galactocentric distance, R0 in units of kpc.
These variables can also be used within predefined functions as PARAMETERS with the following names

rho_0 : ρ0 ,
r_s : rs ,
alpha : α ,
beta : β ,
gamma : γ ,
rho_oplus: ρ⊕ ,
R_0 : R0 .

Predefined values of the most commonly used halo distributions are
DLHA rho_g 1: Hernquist-Zhao profile, as given in Eq. (71),
DLHA rho_g 2: NFW density profile, defined by Eq. (71),
DLHA rho_g 3: Kravtsov et al. profile, defined by Eq. (71),
DLHA rho_g 4: Modified isothermal profile, as given in Eq. (72),
DLHA rho_g 5: Einasto profile, as given in Eq. (73),
DLHA rho_g 6: Moore et al. profile, as given in Eq. (74),
DLHA rho_g 7: Burkert profile, as given in Eq. (75).

For example, in a DLHA file a predefined NFW profile can be referred to as

# identifier(s) parameter value comment
1 0.385954823E+00 # rho_0 [GeV/cmˆ3]
2 2.000000000E+01 # scale radius r_s [kpc]
3 3.000000000E+00 # parameter $\alpha$
4 2.000000000E+00 # parameter $\beta$
5 1.000000000E+00 # parameter $\gamma$

# --------------------------------------------------------
FUNCTION rho_g type=P args=1
DLHA rho_g 2 # NFW profile
END_FUNCTION



Alternatively, the following definition can also be used:

FUNCTION rho_g type=P args=1
DLHA rho_g 2 # NFW profile
PARAMETERS
rho_0 = 0.385954823E+00
r_s = 2.000000000E+01
alpha = 3.000000000E+00
beta = 2.000000000E+00
gamma = 1.000000000E+00
END_PARAMETERS

END_FUNCTION

A sample BLOCK DMSPADIST for a predefined Kravtsov et al. halo profile and a tabulated
velocity distribution may appear as follows:

BLOCK DMSPADIST_MilkyWay
# identifier(s) parameter value comment
1 0.385954823E+00 # rho_0 [GeV/cmˆ3]
2 2.000000000E+01 # r_s [kpc]
3 3.000000000E+00 # alpha
4 2.000000000E+00 # beta
6 0.385954821E+00 # rho_Earth [GeV/cmˆ3]

# -------------------------------------------------------
FUNCTION rho_g type=P args=1 # predefined Kravtsov
DLHA rho_g 3
END_FUNCTION

3.5 BLOCK DMVELDIST
This block contains information about velocity distributions of dark matter needed in direct and indi-
rect detection calculations. Velocities are given using the Galactic coordinate system, described below.
Before discussing the block attributes, we specify common velocity distributions.

Truncated Maxwellian distribution:

f̃(v) =
4πv2

Nesc(2πσ2
v)3/2

e−v
2/2σ2

v θ(vesc − v) (76)

where Nesc = erf(z)− 2ze−z
2
/
√
π with z = vesc/

√
2σv.

Subtracted Maxwellian distribution:

f̃(v) =
4πv2

Nesc(2πσ2
v)3/2

[
e−v

2/2σ2
v − e−v

2
esc/2σ

2
v

]
θ(vesc − v) (77)

where Nesc = erf(z)− 2z(1 + 2z2/3)e−z
2
/
√
π with z = vesc/

√
2σv.

Here Nesc is a normalization factor such that
∫∞
0 f̃(v) dv = 1, vesc is the escape speed (a finite

cutoff in the distribution expected due to high-speed dark matter being able to escape from the object’s
gravitational potential), and σv is a velocity dispersion parameter. In the large vesc limit, the distributions
in Eqs. (76) and (77) reduce to the same Maxwellian distribution with most probable speed v0 =

√
2σv,

1D velocity dispersion σv, and 3D velocity dispersion
√

3σv.



For direct detection, one needs the local dark matter velocity distribution multiplied by the local
dark matter density. The latter is given in the DMSPADIST block. Here we address the velocity distribu-
tion. Notice that if the local dark matter density is split into different velocity groups, each group has its
own block DMVELDIST.

For direct detection (Eq. 27), one needs the dark matter velocity distribution f(v, t) in the rest
frame of the detector. Its time dependence is expected to arise from the motion of the Earth around
the Sun and about its axis. Since these motions are known, f(v, t) can be obtained through a Galilean
transformation from the Sun’s rest frame,

f(v, t) = f�(vdet + v). (78)

Here f�(u) is the dark matter heliocentric velocity distribution, which is a function of the dark matter
velocity u with respect to the Sun (heliocentric velocity), and vdet is the detector velocity with respect to
the Sun given by vdet = v⊕rev+v⊕rot, where v⊕rev is the (time-varying) velocity of the Earth revolution
relative to the Sun, and v⊕rot is the (time-varying) velocity of the Earth rotation at the location of the
detector relative to the Earth’s rest frame.

Enough information should be given in BLOCK DMVELDIST to reconstruct the three-dimensional
heliocentric velocity distribution f�(u). This is achieved by giving the velocity distribution function
f̃(v) in some specified but otherwise arbitrary reference frame S̃, together with the velocity ṽ of S̃ with
respect to the Sun, i.e.

f�(u) = f̃(u− ṽ). (79)

Though not required (except in a case described below), the reference frame S̃ will typically be chosen
such that the form for f̃(v) becomes more simplified, as occurs in the rest frame of an isotropic velocity
distribution.

3.5.1 The structure of BLOCK DMVELDIST

Similarly to the energy density, dark matter velocity distributions can be specified for various astro-
physical objects: galaxies, halo substructures, or even different local velocity components. Thus, more
than one BLOCK DMVELDIST may appear in a DLHA file. Multiple BLOCK DMVELDIST blocks are
differentiated from each other as

BLOCK DMVELDIST_MilkyWay
...

BLOCK DMVELDIST_NGC6388
...

BLOCK DMVELDIST_VIRGOHI21
...

The function f̃(v) is given by

FUNCTION fv_g type=<type> args=<number of arguments>
...
END_FUNCTION

The units of f̃(v) are assumed to be (km/s)−n, where n is the number of arguments. Two different
conventions apply depending on whether f̃ is presented as a function of one or more than one variable,
i.e., depending on whether n = 1 or n > 1. If n > 1, f̃(v) must be normalized so that

∫
f̃(v) dnv = 1.

If n = 1, i.e., if f̃(v) is a function of only one variable v, it is assumed that (i) the frame S̃ coincides with



the frame in which the average velocity is zero, (ii) in this frame the velocity distribution is isotropic,
(iii) the variable v = |v| is positive and represents the speed, i.e., the magnitude of the velocity, in the
frame S̃, and (iv) f̃(v) is the speed distribution in S̃, normalized so that

∫∞
0 f̃(v) dv = 1.

Predefined values of the most commonly used velocity distributions are
DLHA fv_g 1: Truncated Maxwellian distribution, as given in Eq. (76),
DLHA fv_g 2: Subtracted Maxwellian distribution, as given in Eq. (77).

Names of numerical PARAMETERS featured in these predefined functions are the following:
sigma_v: the velocity dispersion parameter σv in units of km/s,
v_esc : the escape speed vesc in units of km/s.

These parameters can also be given before the FUNCTION definition with the following identifiers
1 σv in units of km/s,
2 vesc in units of km/s.

The S̃ heliocentric velocity vector ṽ is to be given by its components in the Galactic reference
frame. The Galactic reference frame is a right-handed Cartesian coordinate system xyz with x axis
in the direction of the Galactic Center (l = 0, b = 0), y axis in the direction of the Galactic rotation
(l = 90◦, b = 0), and z axis in the direction of the Galaxy’s axis of rotation (North Galactic Pole
b = 90◦). The velocity ṽ is thus given by the following parameters.
11 the x component ṽx of the S̃ heliocentric velocity in units of km/s,
12 the y component ṽy of the S̃ heliocentric velocity in units of km/s,

13 the z component ṽz of the S̃ heliocentric velocity in units of km/s.
A sample BLOCK DMVELDIST for a predefined truncated Maxwellian distribution may appear

as follows:

BLOCK DMVELDIST_standard_dark_halo
# identifier(s) parameter value comment
1 1.555634918E+02 # sigma_v [km/s]
2 6.500000000E+02 # v_esc [km/s]
11 0.000000000E+00 # vframe_x [km/s]
12 -2.200000000E+02 # vframe_y [km/s]
13 0.000000000E+00 # vframe_z [km/s]

# -------------------------------------------------
FUNCTION fv_g type=P args=1 # predefined v distr.
DLHA fv_g 1 # truncated Maxwellian

A sample BLOCK DMVELDIST for a tabulated velocity distribution may appear as follows:

BLOCK DMVELDIST_MilkyWay
1 1.555634918E+02 # sigma_v [km/s]
2 6.500000000E+02 # v_esc [km/s]
11 0.000000000E+00 # vframe_x [km/s]
12 -2.200000000E+02 # vframe_y [km/s]
13 0.000000000E+00 # vframe_z [km/s]

FUNCTION fv_g type=T args=1 # fv_g tabulated
v: 57
# v [km/s] f(v) [s/km]
5.00000000E+01 1.20000000E-01
7.50000000E+01 2.40000000E-01
1.00000000E+02 4.90000000E-01
...

END_FUNCTION



3.6 BLOCK FORMFACTS
The nucleon form factors fN and ∆N

q as introduced in Eqs. (47) and (48). The corresponding identifiers
are:

1 1 up quark scalar form factor for the proton fpu ,
1 2 down quark scalar form factor for the proton fpd ,
1 3 strange quark scalar form factor for the proton fps ,
1 4 heavy quark scalar form factors for the proton fpQ,
2 1 up quark scalar form factor for the neutron fnu ,
2 2 down quark scalar form factor for the neutron fnd ,
2 3 strange quark scalar form factor for the neutron fns ,
2 4 heavy quark scalar form factors for the neutron fnQ,
3 1 up quark vector form factor for the proton fpVu

,
3 2 down quark vector form factor for the proton fpVd

,
4 1 up quark vector form factor for the neutron fnVu

,
4 2 down quark vector form factor for the neutron fnVd

,
5 1 up quark axial-vector form factor for the proton ∆p

u,
5 2 down quark axial-vector form factor for the proton ∆p

d,
5 3 strange quark axial-vector form factor for the proton ∆p

s ,
6 1 up quark axial-vector form factor for the neutron ∆n

u,
6 2 down quark axial-vector form factor for the neutron ∆n

d ,
6 3 strange quark axial-vector form factor for the neutron ∆n

s ,
7 1 up quark σµν form factor for the proton δpu,
7 2 down quark σµν form factor for the proton δpd,
7 3 strange quark σµν form factor for the proton δps ,
8 1 up quark σµν form factor for the neutron δnu ,
8 2 down quark σµν form factor for the neutron δnd ,
8 3 strange quark σµν form factor for the neutron δns .

A specific FORMFACTS block for a spin-zero dark matter candidate may look like this:

BLOCK FORMFACTS
# identifier(s) value comment
1 1 2.30000000E-02 # f_uˆp
1 2 3.30000000E-02 # f_dˆp
1 3 2.60000000E-01 # f_sˆp
2 1 1.80000000E-02 # f_uˆn
2 2 4.20000000E-02 # f_dˆn
2 3 2.60000000E-01 # f_sˆn

3.7 BLOCK STRUCTFUN
The nuclear structure functions FA(E) and Sij(E) are defined in Eqs. (33) and (35) for SI interactions,
and Eqs. (37) and (38-40) for SD interactions. They may be given in the form of functions of the recoil
energy E, such as

FUNCTION F_A type=<type> args=1
...
END_FUNCTION



and

FUNCTION S_ij type=<type> args=1
...
END_FUNCTION

The nuclear form factors should carry no unit, while the transferred energy E is in units of keV. For
reference, the transferred energy E is related to the momentum transfer q through E = q2/(2mA),
where mA is the nucleus mass.

The following common parametrizations of FA are used. The exponential form factor defined as

FA(qrn) = e−α(qrn)2/2 with rn = anA
1/3 + bn. (80)

The names of the corresponding parameters that appear in the PARAMETERS list are

A : A the mass number of the nucleus ,
Z : Z the atomic number of the nucleus ,
alpha: α ,
a_n : an in units of fm ,
b_n : bn in units of fm .

The Helm form factor

FA(qrn) = 3
j1(qrn)
qrn

e−(qs)2/2 with r2n = c2 +
7
3
π2a2 − 5s2 and c = c0A

1/3 + c1. (81)

Helm specific names for PARAMETERS are

A : A the mass number of the nucleus ,
Z : Z the atomic number of the nucleus ,
c_0: c0 in units of fm ,
c_1: c1 in units of fm ,
a : a in units of fm ,
s : s skin thickness in units of fm .

The Fermi distribution

FA(q) =
∫
ρ(r)eiq·rd3r with ρ(r) = ρ0(1 + e(r−c)/a)−1 and c = c0A

1/3 + c1. (82)

Corresponding names of PARAMETERS are

A : A the mass number of the nucleus ,
Z : Z the atomic number of the nucleus ,
rho_0: ρ0 ,
c_0 : c0 in units of fm ,
c_1 : c1 in units of fm ,
a : a in units of fm .

Corresponding to these in DLHA the following predefined FA form factors can be used:

DLHA F_A 1: exponential form factor,
DLHA F_A 2: Helm form factor ,
DLHA F_A 3: Fermi distribution .

Examples of specifying these form factors are:



# Exponential form factor:
# F(q r_n) = eˆ{-\alpha (q r_n)ˆ2 / 2)}
# r_n = a_n Aˆ{1/3} + b_n
FUNCTION F_A type=P args=1
DLHA F_A 1 # Exponential form factor
PARAMETERS
Z = 11
A = 23
alpha = 0.20000000E+00 #
a_n = 1.15000000E+00 # [fm]
b_n = 0.39000000E+00 # [fm]
END_PARAMETERS

END_FUNCTION

# General spin-independent form factor (Helm):
# F(q r_n) = 3 \frac{j_1(q r_n)}{q r_n} eˆ{-(qs)ˆ2/2}
# r_nˆ2 = cˆ2 + \frac{7}{3} \piˆ2 aˆ2 - 5 sˆ2
# c = c_0 Aˆ{1/3} + c_1
FUNCTION F_A type=P args=1
DLHA F_A 2 # Helm form factor
PARAMETERS
Z = 11
A = 23
c_0 = 1.23000000E+00 # [fm]
c_1 = -0.60000000E+00 # [fm]
a = 0.52000000E+00 # [fm]
s = 0.90000000E+00 # [fm] skin thickness
END_PARAMETERS

END_FUNCTION

# Fermi distribution:
FUNCTION F_A type=P args=1
DLHA F_A 3 # Fermi distribution
PARAMETERS
Z = 11
A = 23
c_0 = 1.23000000E+00 # [fm]
c_1 = -0.60000000E+00 # [fm]
a = 0.52000000E+00 # [fm]
END_PARAMETERS

END_FUNCTION

# Sodium (spin-dependent, tabulated)
FUNCTION S_00 type=T args=1
PARAMETERS
Z = 11
A = 23
END PARAMETERS
E: 101

# E S_00



0.000000E+00 1.000000E+00
1.000000E+00 0.997000E+00
2.000000E+00 0.994000E+00
...

END FUNCTION

3.8 BLOCK DETECTOR NUCLEI
An alternative way to specify nuclear structure functions Sij is the following.

BLOCK DETECTOR_NUCLEI # DAMA
# Num Fraction A Z J FSD S00 S01 S11
1 0.153 23 11 1.5 STD S00Na23 S00Na23 S11Na23
2 0.847 127 53 2.5 STD S00I127 S00I127 S11I127

FUNCTION S00Na23 type=C args=1
libName=libmicromegas.so
funcName=S00Na23
END_FUNCTION

3.9 BLOCK MASS
Block MASS is part of SLHA. It is used by DLHA to identify the dark matter particle and to specify its
mass. Specific examples of BLOCK MASS appear in the introduction of this section.

3.10 BLOCK QNUMBERS
This block is part of the Les Houches BSM Generator Accord and defined in Ref. [41]. The block
contains information on the spin, self-conjugate nature, the standard (SU(3)C , SU(2)W , U(1)Y ) and
exotic charges of the particle. It may be extended to also contain information about quantum numbers
corresponding to discreet symmetries such as R-parity, KK-parity, T-parity, Z-parities. This extension
may be published in the same proceedings as this work.

3.11 BLOCK ABUNDANCE
Abundances of any species of dark matter particles receive their own block, detailing their properties.
The elements of the abundance block are the following.

1 The freeze-out temperature Tf in units of GeV/k as defined by the condition in Eq. (13).
2 The chosen value of α for Eq. (13).
3 The thermal average of the total (co-)annihilation cross section times velocity at freeze-out 〈σv〉(Tf )

in units of cm3/s as defined in Eq. (2).
4 The average energy density of the dark matter particle Ωχh

2 in units of the critical density as given in
Eq. (16) due to thermal production,

5 Same as above but for non-thermal production.
6 Percentage contribution to the total cross section by (co-)annihilation channels. This line will appear

multiple times for a cross section with multiple (co-)annihilation channels. Each line lists the PDG
codes of the two final state particles along with the percent at which it contributes to the total
(co-)annihilation cross section.

An example of BLOCK ABUNDANCE for a thermally produced dark matter candidate with an
abundance of Ωχh

2 = 0.11018437 is the following:



BLOCK ABUNDANCE
# identifier(s) parameter value comment
1 5.16392660E+00 # T_f [GeV/k]
2 1.50000000E+00 # alpha
3 3.18452057E-26 # <sigma v>(T_f) [cmˆ3/s]
4 0.11018437E+00 # Omega hˆ2 thermal

# annihilation channel contribution to <sigma v>(T_f) [%]
# identifier(s) PGD code 1 PGD code 2 %
6 ... ... ...

3.12 BLOCK EFFCOUPLING
The entries of this block are the effective dark matter-nucleon couplings as defined in Eqs. (47) and (48).

1 Spin-independent scalar coupling fp for sχ = 1/2 and the proton,
2 Spin-independent scalar coupling fn for sχ = 1/2 and the neutron,
3 Spin-dependent axial-vector coupling ap for sχ = 1/2 and the proton,
4 Spin-dependent axial-vector coupling an for sχ = 1/2 and the neutron.

An example for a EFFCOUPLING block is the following

BLOCK EFFCOUPLING
# identifier(s) parameter value comment
1 0.10000000E+00 # f_p
2 0.10000000E+00 # f_n
3 0.00000000E+00 # a_p
4 0.00000000E+00 # a_n

3.13 BLOCK NDMCROSSSECT
This block contains the spin-independent and spin-dependent nucleon-dark matter elastic scattering cross
sections σSI,SDN found using Eqs. (34) and (44).
1 The spin-independent proton-dark matter elastic scattering cross section σSIp in units of cm2,

2 The spin-independent neutron-dark matter elastic scattering cross section σSIn in units of cm2,
3 The spin-dependent proton-dark matter elastic scattering cross section σSDp in units of cm2,

4 The spin-dependent neutron-dark matter elastic scattering cross section σSDn in units of cm2.
An example for a NDMCROSSSECT block is the following

BLOCK NDMCROSSSECT
# identifier(s) parameter value comment
1 0.12345678E-41 # \sigmaˆ{SI}_p [cmˆ2]
2 0.23456789E-41 # \sigmaˆ{SI}_n [cmˆ2]
3 0.34567890E-41 # \sigmaˆ{SD}_p [cmˆ2]
4 0.45678901E-41 # \sigmaˆ{SD}_n [cmˆ2]

3.14 BLOCK ASTROPROPAG
This and the following blocks describe aspects of the calculations relevant to indirect detection experi-
ments. BLOCK ASTROPROPAG contains parameters and functions of the propagation model for charged
cosmic rays. The parameters in this block are the following:

1 normalization of the spatial diffusion coefficient K0, in Eq. (57),



2 coefficient η, controlling the dependence on v of the spatial diffusion coefficient in Eq. (57),
3 coefficient δ parameterizing the steepness of the spatial diffusion coefficient in energy, in Eq. (57),
4 normalization of the energy loss coefficient b0, in Eq. (58),
5 half-height L of the diffusion box in units of kpc,
6 radius R of the diffusion box in units of kpc,
7 re-acceleration parameter vA in units of km/s, in Eq. (59),
8 Galactic wind parameter VC in units of km/s, in Eq. (52).

A spatial diffusion coefficient with generic energy or rigidity dependence can be defined by the
function

FUNCTION SpatDiff type=<type> args=1
...
END_FUNCTION

A predefined spatial diffusion coefficient dependence is given by Eq. (57) and can be indicated by

FUNCTION SpatDiff type=P args=1
DLHA SpatDiff 1
END_FUNCTION

The energy loss coefficient for charged cosmic rays, b(E), can also be defined by

FUNCTION EnerLoss type=<type> args=1
...
END_FUNCTION

Its predefined form, given by Eq. (58), is indicated as

FUNCTION EnerLoss type=P args=1
DLHA EnerLoss 1
END_FUNCTION

3.15 BLOCK DMCLUMPS
This is a recommended block and it is only sketched in this version of DLHA. It should store information
regarding dark matter substructures. It stores the relevant information on the distribution of dark matter
substructures inside the Milky Way halo.

The inner structures of clumps are similar to the dark matter distributions inside galactic halos.
Whatever the favourite density profile, code builders need to compute the annihilation volume ξ as a
function of the substructure mass Mcl. For this, they need to compute the virial radius Rvir of a given
clump. This radius encompasses an average density

ρ̄(Rvir) =
Mcl

(4π/3)R3
vir

= ∆vir ΩM ρ0
C , (83)

which is ∆vir times larger than the average cosmological matter density ΩMρ
0
C . The concentration of the

clump is defined as the ratio

cvir =
Rvir

r−2
, (84)



where the clump density profile has slope −2 at radius r = r−2. The mass-to-concentration relation can
be parameterized as [34]

ln(cvir) =
4∑
i=0

Ci

{
ln
(
Mcl

M�

)}i
. (85)

The output is the annihilation volume ξ as a function of the clump mass Mcl.

The substructure probability distribution D(~rS , ξ) and the total number of clumps NH inside the
Milky Way halo can be inferred from the space and mass distribution function d4Ncl/dMcl d

3rS . As an
illustration, we can assume the space distribution of clumps to be isotropic and independent of the mass
spectrum, so that

d2Ncl

4πr2SdrS dMcl
=
dNcl

dMcl
× P(rS). (86)

The mass distribution is taken in general to be the power law

dNcl

dMcl
=

C

Mcl
α , (87)

where the normalization constant C is calculated by requiring that the Milky Way halo contains a certain
number of substructures with mass in the range M1 and M2. In [34] for instance, there are 100 clumps
between 108 and 1010M�. The mass spectrum of the clumps extends from Minf to Msup which are
inputs of the code.

The last input is the space distribution function P(rS). Substructures do not follow the smooth
dark matter distribution. In particular, they are tidally disrupted near the Galactic center, hence a deficit
with respect to the smooth component. As an illustration, a possible clump distribution is given by the
isothermal profile with core radius a

P(rS) =
κ

a(a2 + r2S)
. (88)

Assuming that the integral of P(rS) from r = rmin to r = rmax is normalized to unity leads to the
constant

κ =
1/4π

(u2 − u1)− {arctan(u2)− arctan(u1)}
, (89)

where u1 = rmin/a and u2 = rmax/a. This is just an example. What is actually needed is the input
function P(rS).

3.16 BLOCK ANNIHILATION
Input block (from various particle physics model codes) that can be used by other codes to calculate the
source spectra from annihilation. This block contains the total annihilation cross section and partial cross
sections into different standard model final states.

1 Annihilation cross section times velocity, σv in the v → 0 limit and in units of cm3/s, followed by a
table of annihilation channels with branching fractions with the following columns:

column 1 branching fraction (BR),
column 2 number of annihilation products (NDA),
column 3 PDG code of annihilation product 1,
column 4 PDG code of annihilation product 2.

An example entry could look like



BLOCK ANNIHILATION
1 3.000000E-26 # sigma v (v->0) [cmˆ3/s]

# BR NDA ID1 ID2 comment
9.50000000E-01 2 24 -24 # X X -> W+ W-
4.00000000E-02 2 5 -5 # X X -> b b-bar
1.00000000E-02 2 25 36 # X X -> H_1ˆ0 H_3ˆ0

3.17 BLOCK INDIRDETSPECTRUM i n

The spectra of end products (such as positrons, gamma rays, antiprotons, etc.) in the halo (or vacuum)
or in an environment (like the Sun) can be calculated from the information given in the blocks above.
These spectra can then be used as input for programs that solve the cosmic ray propagation, or calculate
the fluxes from some particular sources in the sky (in case of neutral particles). If for example the block
ANNIHILATION is given at the same time as any of the spectrum blocks given below, the blocks below
should take precedence, i.e. the codes should not recalculate the spectra if a spectrum is already given in
the DLHA file.

The block definition is

BLOCK INDIRDETSPECTRUM i n

where i is the dark matter particle and n is the spectrum type:
n = 1: positron spectrum in vacuum (or the halo)
n = 2: antiproton spectrum in vacuum (or the halo)
n = 3: antideutron spectrum in vacuum (or the halo)
n = 4: gamma-ray spectrum in vacuum (or the halo)
n = 5: electron neutrino spectrum in vacuum (or the halo)
n = 6: muon neutrino spectrum in vacuum (or the halo)
n = 7: tau neutrino spectrum in vacuum (or the halo)
n = 101: electron neutrino spectrum at the Earth from annihilations in the Sun
n = 102: electron anti-neutrino spectrum at the Earth from annihilations in the Sun
n = 103: muon neutrino spectrum at the Earth from annihilations in the Sun
n = 104: muon anti-neutrino spectrum at the Earth from annihilations in the Sun
n = 105: tau neutrino spectrum at the Earth from annihilations in the Sun
n = 106: tau anti-neutrino spectrum at the Earth from annihilations in the Sun
n = 113: µ− spectrum at the Earth (coming from muon neutrino nucleon interactions) from annihila-

tions in the Sun
n = 114: µ+ spectrum at the Earth (coming from muon neutrino nucleon interactions) from annihila-

tions in the Sun
n = 201: electron neutrino spectrum at the Earth from annihilations in the Earth
n = 202: electron anti-neutrino spectrum at the Earth from annihilations in the Earth
n = 203: muon neutrino spectrum at the Earth from annihilations in the Earth
n = 204: muon anti-neutrino spectrum at the Earth from annihilations in the Earth
n = 205: tau neutrino spectrum at the Earth from annihilations in the Earth
n = 206: tau anti-neutrino spectrum at the Earth from annihilations in the Earth
n = 213: µ− spectrum at the Earth (coming from muon neutrino nucleon interactions) from annihila-

tions in the Earth
n = 214: µ+ spectrum at the Earth (coming from muon neutrino nucleon interactions) from annihila-

tions in the Earth



The content of the block is the energy distribution dN/dE as the function of the energy E:

E dN/dE

The spectrum dN/dE is the yield per annihilation or decay at that energy (for n < 100). For spectra
from the Sun/Earth (n > 100), the units of dN/dE are per annihilation per m2.

A typical spectrum block could then look like

BLOCK INDIRDETSPECTRUM 1 4 # gamma-ray spectrum
# E dN/dE
1.000000E-02 1.000000E-4
2.000000E-02 1.200000E-4

...

3.18 DECAY files
For decaying dark matter particles a standard SLHA decay file can be used to read and write the total
decay width of the dark matter particle and its branching ratios into various final states. In SLHA DECAY
entries are possible for decay channels of various particles, including the dark matter particle. They
look similar to the ANNIHILATION block above. To be able to calculate the complete spectrum from
annihilation and decay of a dark matter particle, we also need the partial decay widths (or branching
ratios) for other new physics particles, e.g. new Higgs bosons. These DECAY structures should follow
the same format as in SLHA2. For example, the decay of a Higgs boson might look like

# PDG Width
DECAY 1000039 3.287443E+35
# BR NDD ID1 ID2 channel
9.50000000E-01 2 24 -24 # W+ W-
5.00000000E-02 2 5 -5 # b b-bar
# -----------------------------------------
# PDG Width
DECAY 35 3.287443E+00
# BR NDA ID1 ID2

9.000000E-01 2 5 -5 # b b-bar
6.000000E-02 2 24 -24 # W- W+
4.000000E-02 2 23 -23 # Z0 Z0

4. OPEN ISSUES

A partial list of open issues is addressed in various degrees of detail.

4.1 Cosmology related open issues
• Other generalizations of the standard cosmological equations.
• The standard inflation scenario should be discussed as well.
• Decaying inflaton scenario? Can be presented as an example.

4.2 Astrophysics related related open issues
• The notation in BLOCK DMSPADIST is confusing. ρ0 is not the density at R0. The local density

could be called ρ� and the Galactocentric distance R�. It should be clearly stated that either the



density is defined with respect to the change of slope (or the interior mass) and then parameters (1,
2, 3, 4, and 5) are needed, or with respect to the local density, which requires parameters (2, 3, 4,
5, 6, and 7). Giving all the parameters is also possible but one needs to check consistency.

• Ideally, DLHA should be able to accommodate innately anisotropic distributions.
• A capability for non-spherical and/or clumped halo distributions are also desirable.
• Notation: should we relabel ρ0 to ρN (such as ρ normalisation without any more specification as

N-body codes use different definitions) and ρ⊕ to ρ0 so that ρ0 = ρ(r = R0)?

4.3 Direct detection related open issues
• For non-self conjugate dark matter particles there is a need to present nuclear cross sections for

antiparticles. This is not possible within the present setup.

4.4 Indirect detection related open issues
• Photon energy losses.
• Solar modulation - lack of unified treatment.
• Standardize the quantities that enter the transport equation (for example, the diffusion coefficient,

the re-acceleration term and so on), in such a way that free parameters are identified.

4.5 Other open issues
• Kinetic decoupling of DM particles should be discussed. This sets the small-scale cutoff in the

spectrum of density perturbations, viz. the mass of smallest dark matter halos, and can have
impact on, e.g., the anisotropy spectrum and the ’boost factor’ for indirect searches.

• Concerning the calculation of the relic density, the importance of the QCD phase transition should
be stressed. This may impact strongly the calculation if the dark matter candidate is light (10
GeV/c2 or so). The QCD phase transition temperature should be a parameter to put in BLOCK
DOFREEDOM.

• BLOCK DMPDGCODE: suggestion for a new block more explicitly identifying the DM candi-
date(s).

1 0 1000022 # neutralino
1 1 1000012 # sneutrino
...
2 0 9999999 # axion

• Issue of large tables in large para scans: I/O may take a long time.
• Scenarios/models with Z3, Z4 etc., different interactions, processes appear.
• Semi-annihilations?
• Possible conflict between multi-component dark matter and asymmtry/clumping/non-spherical

halo.
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