1 Feynman rules in momentum space

Throughout this notes we will adopt the following convention for momenta: any derivative
acting of a field leads to ip,, where the momentum p,, is flowing out the vertex; that is, the
wave function of a field is et when p is outgoing.

In the SM one has the following Feynman rules in momentum space:
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The Feynman rules for the vertices with one p and two gauge bosons are (p; » are flowing
out of the vertex, ¢ = p; + po is flowing into it):
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Notice that for an on-shell p one has p; - ps = (1/2)¢* = (1/2)m>.

The Feynman rules for the vertices with one p, one vector boson and one Higgs boson
have the form: (p; 2 are flowing out of the vertex, ¢ = p; + ps is flowing into it):
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In the fermion sector, we assume that the SM fermions couple to the p only through its
mixing with the elementary SU(2); x U(1)y gauge fields, whose Lagrangian reads:
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where Y is the hypercharge normalized such that Y[ug] = +2/3. In the mass eigenbasis, the
Feynman rules for the vertices with one p and two SM fermions are:
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where Y = {u,v}, ¥, ={d,l} and PLp = (1 £;5)/2.

The on-shell production and decay processes of the p are thus controlled by the following
parameters: the on-shell values of the form factors G**(m?), G (m2), Hg’i(mf)), Hy (m?),
and the masses of p° and p*.

2 Determining the form factors from the SO(5)/SO(4)
chiral Lagrangian

We normalize the SO(5) generators T4 (A = 1—10) so that Tr(TAT?) = §45. We distinguish
between broken (SO(5)/S0(4)) generators T% and unbroken (SO(4)) generators T?. The
commutation rules can be found in Appendix A of arXiv:1109.1570.

As for the previous case, we follow the CCWZ formalism and use the vector notation
where p,, transforms as a gauge field in the adjoint of SO(4). In practice we will consider
separately the case of a py adjoint of SU(2); and that of a pgr adjoint of SU(2)g. The
CCWZ covariant variables are defined by the following equations (U = exp(ill(z)), II(z) =

V2Tt (2)/ f):
—iU'DU =d;T* + E T} + Bl “Th = d, + Ej; + EI. (15)
The SO(5)/S0O(4) chiral Lagrangian then reads, at O(p?),
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The index labeling the p field runs over the adjoint of SU(2), or of SU(2)g. By using the
commutation rules for SO(5) it follows (i = 1,2, 3):
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where ¢ is the vacuum misalignment angle, such that v = fsin¢ and ¢ = (v/f)? = sin? ¢.

For ¢ <« 1 it is possible to diagonalize the mass matrix in two steps: one can first resolve
the composite-elementary mixing before EWSB, and then rotate to find the mass eigenstates
after EWSB. Before any rotation, the term of the Lagrangian relevant for the coupling of
the p to NG bosons reads, for canonically normalized fields,
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where the + (—) sign in the second term in squared parenthesis is for a p~ (p

By performing the elementary-composite rotation one can derive the couplings of the
physical p to SM fermions and vector bosons. In the case of a py, all three components must
be rotated, in an SU(2)-invariant way, to diagonalize the mass matrix:
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The masses of the heavy mass eigenstates and the strength of the p*p~p® coupling are, before

EWSB,
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The form factors are:
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In the case of a pg, instead, only the neutral component undergoes the elementary-composite

mixing:
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so that the physical masses and p*p~p® couplings strength read:
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